Integralen av $$$\frac{1}{a y^{4}}$$$ med avseende på $$$y$$$

Kalkylatorn beräknar integralen/primitivfunktionen av $$$\frac{1}{a y^{4}}$$$ med avseende på $$$y$$$, med stegvis lösning.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \frac{1}{a y^{4}}\, dy$$$.

Lösning

Tillämpa konstantfaktorregeln $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ med $$$c=\frac{1}{a}$$$ och $$$f{\left(y \right)} = \frac{1}{y^{4}}$$$:

$${\color{red}{\int{\frac{1}{a y^{4}} d y}}} = {\color{red}{\frac{\int{\frac{1}{y^{4}} d y}}{a}}}$$

Tillämpa potensregeln $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=-4$$$:

$$\frac{{\color{red}{\int{\frac{1}{y^{4}} d y}}}}{a}=\frac{{\color{red}{\int{y^{-4} d y}}}}{a}=\frac{{\color{red}{\frac{y^{-4 + 1}}{-4 + 1}}}}{a}=\frac{{\color{red}{\left(- \frac{y^{-3}}{3}\right)}}}{a}=\frac{{\color{red}{\left(- \frac{1}{3 y^{3}}\right)}}}{a}$$

Alltså,

$$\int{\frac{1}{a y^{4}} d y} = - \frac{1}{3 a y^{3}}$$

Lägg till integrationskonstanten:

$$\int{\frac{1}{a y^{4}} d y} = - \frac{1}{3 a y^{3}}+C$$

Svar

$$$\int \frac{1}{a y^{4}}\, dy = - \frac{1}{3 a y^{3}} + C$$$A


Please try a new game Rotatly