Integralen av $$$\frac{\sqrt{15}}{15 \sqrt{x}}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$\frac{\sqrt{15}}{15 \sqrt{x}}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \frac{\sqrt{15}}{15 \sqrt{x}}\, dx$$$.

Lösning

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=\frac{\sqrt{15}}{15}$$$ och $$$f{\left(x \right)} = \frac{1}{\sqrt{x}}$$$:

$${\color{red}{\int{\frac{\sqrt{15}}{15 \sqrt{x}} d x}}} = {\color{red}{\left(\frac{\sqrt{15} \int{\frac{1}{\sqrt{x}} d x}}{15}\right)}}$$

Tillämpa potensregeln $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=- \frac{1}{2}$$$:

$$\frac{\sqrt{15} {\color{red}{\int{\frac{1}{\sqrt{x}} d x}}}}{15}=\frac{\sqrt{15} {\color{red}{\int{x^{- \frac{1}{2}} d x}}}}{15}=\frac{\sqrt{15} {\color{red}{\frac{x^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{15}=\frac{\sqrt{15} {\color{red}{\left(2 x^{\frac{1}{2}}\right)}}}{15}=\frac{\sqrt{15} {\color{red}{\left(2 \sqrt{x}\right)}}}{15}$$

Alltså,

$$\int{\frac{\sqrt{15}}{15 \sqrt{x}} d x} = \frac{2 \sqrt{15} \sqrt{x}}{15}$$

Lägg till integrationskonstanten:

$$\int{\frac{\sqrt{15}}{15 \sqrt{x}} d x} = \frac{2 \sqrt{15} \sqrt{x}}{15}+C$$

Svar

$$$\int \frac{\sqrt{15}}{15 \sqrt{x}}\, dx = \frac{2 \sqrt{15} \sqrt{x}}{15} + C$$$A


Please try a new game Rotatly