Integralen av $$$\frac{x - 2}{\sqrt{x - 1}}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$\frac{x - 2}{\sqrt{x - 1}}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \frac{x - 2}{\sqrt{x - 1}}\, dx$$$.

Lösning

Skriv om täljaren till $$$x - 2=\left(x - 1\right) - 1$$$ och dela upp bråket:

$${\color{red}{\int{\frac{x - 2}{\sqrt{x - 1}} d x}}} = {\color{red}{\int{\left(\sqrt{x - 1} - \frac{1}{\sqrt{x - 1}}\right)d x}}}$$

Integrera termvis:

$${\color{red}{\int{\left(\sqrt{x - 1} - \frac{1}{\sqrt{x - 1}}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{\sqrt{x - 1}} d x} + \int{\sqrt{x - 1} d x}\right)}}$$

Låt $$$u=x - 1$$$ vara.

$$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (stegen kan ses »), och vi har att $$$dx = du$$$.

Integralen kan omskrivas som

$$- \int{\frac{1}{\sqrt{x - 1}} d x} + {\color{red}{\int{\sqrt{x - 1} d x}}} = - \int{\frac{1}{\sqrt{x - 1}} d x} + {\color{red}{\int{\sqrt{u} d u}}}$$

Tillämpa potensregeln $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=\frac{1}{2}$$$:

$$- \int{\frac{1}{\sqrt{x - 1}} d x} + {\color{red}{\int{\sqrt{u} d u}}}=- \int{\frac{1}{\sqrt{x - 1}} d x} + {\color{red}{\int{u^{\frac{1}{2}} d u}}}=- \int{\frac{1}{\sqrt{x - 1}} d x} + {\color{red}{\frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}=- \int{\frac{1}{\sqrt{x - 1}} d x} + {\color{red}{\left(\frac{2 u^{\frac{3}{2}}}{3}\right)}}$$

Kom ihåg att $$$u=x - 1$$$:

$$- \int{\frac{1}{\sqrt{x - 1}} d x} + \frac{2 {\color{red}{u}}^{\frac{3}{2}}}{3} = - \int{\frac{1}{\sqrt{x - 1}} d x} + \frac{2 {\color{red}{\left(x - 1\right)}}^{\frac{3}{2}}}{3}$$

Låt $$$u=x - 1$$$ vara.

$$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (stegen kan ses »), och vi har att $$$dx = du$$$.

Integralen kan omskrivas som

$$\frac{2 \left(x - 1\right)^{\frac{3}{2}}}{3} - {\color{red}{\int{\frac{1}{\sqrt{x - 1}} d x}}} = \frac{2 \left(x - 1\right)^{\frac{3}{2}}}{3} - {\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}$$

Tillämpa potensregeln $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=- \frac{1}{2}$$$:

$$\frac{2 \left(x - 1\right)^{\frac{3}{2}}}{3} - {\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}=\frac{2 \left(x - 1\right)^{\frac{3}{2}}}{3} - {\color{red}{\int{u^{- \frac{1}{2}} d u}}}=\frac{2 \left(x - 1\right)^{\frac{3}{2}}}{3} - {\color{red}{\frac{u^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}=\frac{2 \left(x - 1\right)^{\frac{3}{2}}}{3} - {\color{red}{\left(2 u^{\frac{1}{2}}\right)}}=\frac{2 \left(x - 1\right)^{\frac{3}{2}}}{3} - {\color{red}{\left(2 \sqrt{u}\right)}}$$

Kom ihåg att $$$u=x - 1$$$:

$$\frac{2 \left(x - 1\right)^{\frac{3}{2}}}{3} - 2 \sqrt{{\color{red}{u}}} = \frac{2 \left(x - 1\right)^{\frac{3}{2}}}{3} - 2 \sqrt{{\color{red}{\left(x - 1\right)}}}$$

Alltså,

$$\int{\frac{x - 2}{\sqrt{x - 1}} d x} = \frac{2 \left(x - 1\right)^{\frac{3}{2}}}{3} - 2 \sqrt{x - 1}$$

Förenkla:

$$\int{\frac{x - 2}{\sqrt{x - 1}} d x} = \frac{2 \left(x - 4\right) \sqrt{x - 1}}{3}$$

Lägg till integrationskonstanten:

$$\int{\frac{x - 2}{\sqrt{x - 1}} d x} = \frac{2 \left(x - 4\right) \sqrt{x - 1}}{3}+C$$

Svar

$$$\int \frac{x - 2}{\sqrt{x - 1}}\, dx = \frac{2 \left(x - 4\right) \sqrt{x - 1}}{3} + C$$$A


Please try a new game Rotatly