Integralen av $$$\frac{\cot{\left(x \right)}}{\ln\left(\sin{\left(x \right)}\right)}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \frac{\cot{\left(x \right)}}{\ln\left(\sin{\left(x \right)}\right)}\, dx$$$.
Lösning
Låt $$$u=\sin{\left(x \right)}$$$ vara.
Då $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (stegen kan ses »), och vi har att $$$\cos{\left(x \right)} dx = du$$$.
Integralen kan omskrivas som
$${\color{red}{\int{\frac{\cot{\left(x \right)}}{\ln{\left(\sin{\left(x \right)} \right)}} d x}}} = {\color{red}{\int{\frac{1}{u \ln{\left(u \right)}} d u}}}$$
Låt $$$v=\ln{\left(u \right)}$$$ vara.
Då $$$dv=\left(\ln{\left(u \right)}\right)^{\prime }du = \frac{du}{u}$$$ (stegen kan ses »), och vi har att $$$\frac{du}{u} = dv$$$.
Alltså,
$${\color{red}{\int{\frac{1}{u \ln{\left(u \right)}} d u}}} = {\color{red}{\int{\frac{1}{v} d v}}}$$
Integralen av $$$\frac{1}{v}$$$ är $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$${\color{red}{\int{\frac{1}{v} d v}}} = {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$
Kom ihåg att $$$v=\ln{\left(u \right)}$$$:
$$\ln{\left(\left|{{\color{red}{v}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\ln{\left(u \right)}}}}\right| \right)}$$
Kom ihåg att $$$u=\sin{\left(x \right)}$$$:
$$\ln{\left(\left|{\ln{\left({\color{red}{u}} \right)}}\right| \right)} = \ln{\left(\left|{\ln{\left({\color{red}{\sin{\left(x \right)}}} \right)}}\right| \right)}$$
Alltså,
$$\int{\frac{\cot{\left(x \right)}}{\ln{\left(\sin{\left(x \right)} \right)}} d x} = \ln{\left(\left|{\ln{\left(\sin{\left(x \right)} \right)}}\right| \right)}$$
Lägg till integrationskonstanten:
$$\int{\frac{\cot{\left(x \right)}}{\ln{\left(\sin{\left(x \right)} \right)}} d x} = \ln{\left(\left|{\ln{\left(\sin{\left(x \right)} \right)}}\right| \right)}+C$$
Svar
$$$\int \frac{\cot{\left(x \right)}}{\ln\left(\sin{\left(x \right)}\right)}\, dx = \ln\left(\left|{\ln\left(\sin{\left(x \right)}\right)}\right|\right) + C$$$A