Integralen av $$$\frac{\sin{\left(2 x \right)}}{\cos^{3}{\left(2 x \right)}}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$\frac{\sin{\left(2 x \right)}}{\cos^{3}{\left(2 x \right)}}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \frac{\sin{\left(2 x \right)}}{\cos^{3}{\left(2 x \right)}}\, dx$$$.

Lösning

Låt $$$u=\cos{\left(2 x \right)}$$$ vara.

$$$du=\left(\cos{\left(2 x \right)}\right)^{\prime }dx = - 2 \sin{\left(2 x \right)} dx$$$ (stegen kan ses »), och vi har att $$$\sin{\left(2 x \right)} dx = - \frac{du}{2}$$$.

Integralen kan omskrivas som

$${\color{red}{\int{\frac{\sin{\left(2 x \right)}}{\cos^{3}{\left(2 x \right)}} d x}}} = {\color{red}{\int{\left(- \frac{1}{2 u^{3}}\right)d u}}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=- \frac{1}{2}$$$ och $$$f{\left(u \right)} = \frac{1}{u^{3}}$$$:

$${\color{red}{\int{\left(- \frac{1}{2 u^{3}}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{1}{u^{3}} d u}}{2}\right)}}$$

Tillämpa potensregeln $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=-3$$$:

$$- \frac{{\color{red}{\int{\frac{1}{u^{3}} d u}}}}{2}=- \frac{{\color{red}{\int{u^{-3} d u}}}}{2}=- \frac{{\color{red}{\frac{u^{-3 + 1}}{-3 + 1}}}}{2}=- \frac{{\color{red}{\left(- \frac{u^{-2}}{2}\right)}}}{2}=- \frac{{\color{red}{\left(- \frac{1}{2 u^{2}}\right)}}}{2}$$

Kom ihåg att $$$u=\cos{\left(2 x \right)}$$$:

$$\frac{{\color{red}{u}}^{-2}}{4} = \frac{{\color{red}{\cos{\left(2 x \right)}}}^{-2}}{4}$$

Alltså,

$$\int{\frac{\sin{\left(2 x \right)}}{\cos^{3}{\left(2 x \right)}} d x} = \frac{1}{4 \cos^{2}{\left(2 x \right)}}$$

Lägg till integrationskonstanten:

$$\int{\frac{\sin{\left(2 x \right)}}{\cos^{3}{\left(2 x \right)}} d x} = \frac{1}{4 \cos^{2}{\left(2 x \right)}}+C$$

Svar

$$$\int \frac{\sin{\left(2 x \right)}}{\cos^{3}{\left(2 x \right)}}\, dx = \frac{1}{4 \cos^{2}{\left(2 x \right)}} + C$$$A


Please try a new game Rotatly