Integralen av $$$\cos{\left(\omega t^{2} \right)}$$$ med avseende på $$$t$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \cos{\left(\omega t^{2} \right)}\, dt$$$.
Lösning
Låt $$$u=\sqrt{\omega} t$$$ vara.
Då $$$du=\left(\sqrt{\omega} t\right)^{\prime }dt = \sqrt{\omega} dt$$$ (stegen kan ses »), och vi har att $$$dt = \frac{du}{\sqrt{\omega}}$$$.
Alltså,
$${\color{red}{\int{\cos{\left(\omega t^{2} \right)} d t}}} = {\color{red}{\int{\frac{\cos{\left(u^{2} \right)}}{\sqrt{\omega}} d u}}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=\frac{1}{\sqrt{\omega}}$$$ och $$$f{\left(u \right)} = \cos{\left(u^{2} \right)}$$$:
$${\color{red}{\int{\frac{\cos{\left(u^{2} \right)}}{\sqrt{\omega}} d u}}} = {\color{red}{\frac{\int{\cos{\left(u^{2} \right)} d u}}{\sqrt{\omega}}}}$$
Denna integral (Fresnels cosinusintegral) har ingen sluten form:
$$\frac{{\color{red}{\int{\cos{\left(u^{2} \right)} d u}}}}{\sqrt{\omega}} = \frac{{\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} u}{\sqrt{\pi}}\right)}{2}\right)}}}{\sqrt{\omega}}$$
Kom ihåg att $$$u=\sqrt{\omega} t$$$:
$$\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} {\color{red}{u}}}{\sqrt{\pi}}\right)}{2 \sqrt{\omega}} = \frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} {\color{red}{\sqrt{\omega} t}}}{\sqrt{\pi}}\right)}{2 \sqrt{\omega}}$$
Alltså,
$$\int{\cos{\left(\omega t^{2} \right)} d t} = \frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} \sqrt{\omega} t}{\sqrt{\pi}}\right)}{2 \sqrt{\omega}}$$
Lägg till integrationskonstanten:
$$\int{\cos{\left(\omega t^{2} \right)} d t} = \frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} \sqrt{\omega} t}{\sqrt{\pi}}\right)}{2 \sqrt{\omega}}+C$$
Svar
$$$\int \cos{\left(\omega t^{2} \right)}\, dt = \frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} \sqrt{\omega} t}{\sqrt{\pi}}\right)}{2 \sqrt{\omega}} + C$$$A