Integralen av $$$\cos{\left(\frac{x}{4} \right)}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \cos{\left(\frac{x}{4} \right)}\, dx$$$.
Lösning
Låt $$$u=\frac{x}{4}$$$ vara.
Då $$$du=\left(\frac{x}{4}\right)^{\prime }dx = \frac{dx}{4}$$$ (stegen kan ses »), och vi har att $$$dx = 4 du$$$.
Alltså,
$${\color{red}{\int{\cos{\left(\frac{x}{4} \right)} d x}}} = {\color{red}{\int{4 \cos{\left(u \right)} d u}}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=4$$$ och $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$${\color{red}{\int{4 \cos{\left(u \right)} d u}}} = {\color{red}{\left(4 \int{\cos{\left(u \right)} d u}\right)}}$$
Integralen av cosinus är $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$4 {\color{red}{\int{\cos{\left(u \right)} d u}}} = 4 {\color{red}{\sin{\left(u \right)}}}$$
Kom ihåg att $$$u=\frac{x}{4}$$$:
$$4 \sin{\left({\color{red}{u}} \right)} = 4 \sin{\left({\color{red}{\left(\frac{x}{4}\right)}} \right)}$$
Alltså,
$$\int{\cos{\left(\frac{x}{4} \right)} d x} = 4 \sin{\left(\frac{x}{4} \right)}$$
Lägg till integrationskonstanten:
$$\int{\cos{\left(\frac{x}{4} \right)} d x} = 4 \sin{\left(\frac{x}{4} \right)}+C$$
Svar
$$$\int \cos{\left(\frac{x}{4} \right)}\, dx = 4 \sin{\left(\frac{x}{4} \right)} + C$$$A