Integralen av $$$4 \sin^{2}{\left(x \right)} \cos^{3}{\left(x \right)}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$4 \sin^{2}{\left(x \right)} \cos^{3}{\left(x \right)}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int 4 \sin^{2}{\left(x \right)} \cos^{3}{\left(x \right)}\, dx$$$.

Lösning

Använd potensreduceringsformeln $$$\cos^{3}{\left(\alpha \right)} = \frac{3 \cos{\left(\alpha \right)}}{4} + \frac{\cos{\left(3 \alpha \right)}}{4}$$$ med $$$\alpha=x$$$:

$${\color{red}{\int{4 \sin^{2}{\left(x \right)} \cos^{3}{\left(x \right)} d x}}} = {\color{red}{\int{\left(3 \cos{\left(x \right)} + \cos{\left(3 x \right)}\right) \sin^{2}{\left(x \right)} d x}}}$$

Använd potensreduceringsformeln $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ med $$$\alpha=x$$$:

$${\color{red}{\int{\left(3 \cos{\left(x \right)} + \cos{\left(3 x \right)}\right) \sin^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{\left(1 - \cos{\left(2 x \right)}\right) \left(3 \cos{\left(x \right)} + \cos{\left(3 x \right)}\right)}{2} d x}}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=\frac{1}{8}$$$ och $$$f{\left(x \right)} = 4 \left(1 - \cos{\left(2 x \right)}\right) \left(3 \cos{\left(x \right)} + \cos{\left(3 x \right)}\right)$$$:

$${\color{red}{\int{\frac{\left(1 - \cos{\left(2 x \right)}\right) \left(3 \cos{\left(x \right)} + \cos{\left(3 x \right)}\right)}{2} d x}}} = {\color{red}{\left(\frac{\int{4 \left(1 - \cos{\left(2 x \right)}\right) \left(3 \cos{\left(x \right)} + \cos{\left(3 x \right)}\right) d x}}{8}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{4 \left(1 - \cos{\left(2 x \right)}\right) \left(3 \cos{\left(x \right)} + \cos{\left(3 x \right)}\right) d x}}}}{8} = \frac{{\color{red}{\int{\left(- 12 \cos{\left(x \right)} \cos{\left(2 x \right)} + 12 \cos{\left(x \right)} - 4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} + 4 \cos{\left(3 x \right)}\right)d x}}}}{8}$$

Integrera termvis:

$$\frac{{\color{red}{\int{\left(- 12 \cos{\left(x \right)} \cos{\left(2 x \right)} + 12 \cos{\left(x \right)} - 4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} + 4 \cos{\left(3 x \right)}\right)d x}}}}{8} = \frac{{\color{red}{\left(- \int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x} - \int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x} + \int{12 \cos{\left(x \right)} d x} + \int{4 \cos{\left(3 x \right)} d x}\right)}}}{8}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=4$$$ och $$$f{\left(x \right)} = \cos{\left(3 x \right)}$$$:

$$- \frac{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{8} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} + \frac{\int{12 \cos{\left(x \right)} d x}}{8} + \frac{{\color{red}{\int{4 \cos{\left(3 x \right)} d x}}}}{8} = - \frac{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{8} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} + \frac{\int{12 \cos{\left(x \right)} d x}}{8} + \frac{{\color{red}{\left(4 \int{\cos{\left(3 x \right)} d x}\right)}}}{8}$$

Låt $$$u=3 x$$$ vara.

$$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (stegen kan ses »), och vi har att $$$dx = \frac{du}{3}$$$.

Integralen kan omskrivas som

$$- \frac{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{8} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} + \frac{\int{12 \cos{\left(x \right)} d x}}{8} + \frac{{\color{red}{\int{\cos{\left(3 x \right)} d x}}}}{2} = - \frac{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{8} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} + \frac{\int{12 \cos{\left(x \right)} d x}}{8} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{2}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=\frac{1}{3}$$$ och $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$- \frac{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{8} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} + \frac{\int{12 \cos{\left(x \right)} d x}}{8} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{2} = - \frac{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{8} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} + \frac{\int{12 \cos{\left(x \right)} d x}}{8} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{3}\right)}}}{2}$$

Integralen av cosinus är $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$- \frac{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{8} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} + \frac{\int{12 \cos{\left(x \right)} d x}}{8} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{6} = - \frac{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{8} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} + \frac{\int{12 \cos{\left(x \right)} d x}}{8} + \frac{{\color{red}{\sin{\left(u \right)}}}}{6}$$

Kom ihåg att $$$u=3 x$$$:

$$- \frac{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{8} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} + \frac{\int{12 \cos{\left(x \right)} d x}}{8} + \frac{\sin{\left({\color{red}{u}} \right)}}{6} = - \frac{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{8} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} + \frac{\int{12 \cos{\left(x \right)} d x}}{8} + \frac{\sin{\left({\color{red}{\left(3 x\right)}} \right)}}{6}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=12$$$ och $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:

$$\frac{\sin{\left(3 x \right)}}{6} - \frac{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{8} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} + \frac{{\color{red}{\int{12 \cos{\left(x \right)} d x}}}}{8} = \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{8} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} + \frac{{\color{red}{\left(12 \int{\cos{\left(x \right)} d x}\right)}}}{8}$$

Integralen av cosinus är $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:

$$\frac{\sin{\left(3 x \right)}}{6} - \frac{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{8} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} + \frac{3 {\color{red}{\int{\cos{\left(x \right)} d x}}}}{2} = \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{8} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} + \frac{3 {\color{red}{\sin{\left(x \right)}}}}{2}$$

Skriv om $$$\cos\left(x \right)\cos\left(2 x \right)$$$ med hjälp av formeln $$$\cos\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)+\frac{1}{2} \cos\left(\alpha+\beta \right)$$$ med $$$\alpha=x$$$ och $$$\beta=2 x$$$:

$$\frac{3 \sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} - \frac{{\color{red}{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}}}{8} = \frac{3 \sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} - \frac{{\color{red}{\int{\left(6 \cos{\left(x \right)} + 6 \cos{\left(3 x \right)}\right)d x}}}}{8}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=\frac{1}{2}$$$ och $$$f{\left(x \right)} = 12 \cos{\left(x \right)} + 12 \cos{\left(3 x \right)}$$$:

$$\frac{3 \sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} - \frac{{\color{red}{\int{\left(6 \cos{\left(x \right)} + 6 \cos{\left(3 x \right)}\right)d x}}}}{8} = \frac{3 \sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} - \frac{{\color{red}{\left(\frac{\int{\left(12 \cos{\left(x \right)} + 12 \cos{\left(3 x \right)}\right)d x}}{2}\right)}}}{8}$$

Integrera termvis:

$$\frac{3 \sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} - \frac{{\color{red}{\int{\left(12 \cos{\left(x \right)} + 12 \cos{\left(3 x \right)}\right)d x}}}}{16} = \frac{3 \sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} - \frac{{\color{red}{\left(\int{12 \cos{\left(x \right)} d x} + \int{12 \cos{\left(3 x \right)} d x}\right)}}}{16}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=12$$$ och $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:

$$\frac{3 \sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} - \frac{\int{12 \cos{\left(3 x \right)} d x}}{16} - \frac{{\color{red}{\int{12 \cos{\left(x \right)} d x}}}}{16} = \frac{3 \sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} - \frac{\int{12 \cos{\left(3 x \right)} d x}}{16} - \frac{{\color{red}{\left(12 \int{\cos{\left(x \right)} d x}\right)}}}{16}$$

Integralen av cosinus är $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:

$$\frac{3 \sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} - \frac{\int{12 \cos{\left(3 x \right)} d x}}{16} - \frac{3 {\color{red}{\int{\cos{\left(x \right)} d x}}}}{4} = \frac{3 \sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} - \frac{\int{12 \cos{\left(3 x \right)} d x}}{16} - \frac{3 {\color{red}{\sin{\left(x \right)}}}}{4}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=12$$$ och $$$f{\left(x \right)} = \cos{\left(3 x \right)}$$$:

$$\frac{3 \sin{\left(x \right)}}{4} + \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} - \frac{{\color{red}{\int{12 \cos{\left(3 x \right)} d x}}}}{16} = \frac{3 \sin{\left(x \right)}}{4} + \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} - \frac{{\color{red}{\left(12 \int{\cos{\left(3 x \right)} d x}\right)}}}{16}$$

Integralen $$$\int{\cos{\left(3 x \right)} d x}$$$ har redan beräknats:

$$\int{\cos{\left(3 x \right)} d x} = \frac{\sin{\left(3 x \right)}}{3}$$

Alltså,

$$\frac{3 \sin{\left(x \right)}}{4} + \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} - \frac{3 {\color{red}{\int{\cos{\left(3 x \right)} d x}}}}{4} = \frac{3 \sin{\left(x \right)}}{4} + \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} - \frac{3 {\color{red}{\left(\frac{\sin{\left(3 x \right)}}{3}\right)}}}{4}$$

Skriv om $$$\cos\left(2 x \right)\cos\left(3 x \right)$$$ med hjälp av formeln $$$\cos\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)+\frac{1}{2} \cos\left(\alpha+\beta \right)$$$ med $$$\alpha=2 x$$$ och $$$\beta=3 x$$$:

$$\frac{3 \sin{\left(x \right)}}{4} - \frac{\sin{\left(3 x \right)}}{12} - \frac{{\color{red}{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}}}{8} = \frac{3 \sin{\left(x \right)}}{4} - \frac{\sin{\left(3 x \right)}}{12} - \frac{{\color{red}{\int{\left(2 \cos{\left(x \right)} + 2 \cos{\left(5 x \right)}\right)d x}}}}{8}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=\frac{1}{2}$$$ och $$$f{\left(x \right)} = 4 \cos{\left(x \right)} + 4 \cos{\left(5 x \right)}$$$:

$$\frac{3 \sin{\left(x \right)}}{4} - \frac{\sin{\left(3 x \right)}}{12} - \frac{{\color{red}{\int{\left(2 \cos{\left(x \right)} + 2 \cos{\left(5 x \right)}\right)d x}}}}{8} = \frac{3 \sin{\left(x \right)}}{4} - \frac{\sin{\left(3 x \right)}}{12} - \frac{{\color{red}{\left(\frac{\int{\left(4 \cos{\left(x \right)} + 4 \cos{\left(5 x \right)}\right)d x}}{2}\right)}}}{8}$$

Integrera termvis:

$$\frac{3 \sin{\left(x \right)}}{4} - \frac{\sin{\left(3 x \right)}}{12} - \frac{{\color{red}{\int{\left(4 \cos{\left(x \right)} + 4 \cos{\left(5 x \right)}\right)d x}}}}{16} = \frac{3 \sin{\left(x \right)}}{4} - \frac{\sin{\left(3 x \right)}}{12} - \frac{{\color{red}{\left(\int{4 \cos{\left(x \right)} d x} + \int{4 \cos{\left(5 x \right)} d x}\right)}}}{16}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=4$$$ och $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:

$$\frac{3 \sin{\left(x \right)}}{4} - \frac{\sin{\left(3 x \right)}}{12} - \frac{\int{4 \cos{\left(5 x \right)} d x}}{16} - \frac{{\color{red}{\int{4 \cos{\left(x \right)} d x}}}}{16} = \frac{3 \sin{\left(x \right)}}{4} - \frac{\sin{\left(3 x \right)}}{12} - \frac{\int{4 \cos{\left(5 x \right)} d x}}{16} - \frac{{\color{red}{\left(4 \int{\cos{\left(x \right)} d x}\right)}}}{16}$$

Integralen av cosinus är $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:

$$\frac{3 \sin{\left(x \right)}}{4} - \frac{\sin{\left(3 x \right)}}{12} - \frac{\int{4 \cos{\left(5 x \right)} d x}}{16} - \frac{{\color{red}{\int{\cos{\left(x \right)} d x}}}}{4} = \frac{3 \sin{\left(x \right)}}{4} - \frac{\sin{\left(3 x \right)}}{12} - \frac{\int{4 \cos{\left(5 x \right)} d x}}{16} - \frac{{\color{red}{\sin{\left(x \right)}}}}{4}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=4$$$ och $$$f{\left(x \right)} = \cos{\left(5 x \right)}$$$:

$$\frac{\sin{\left(x \right)}}{2} - \frac{\sin{\left(3 x \right)}}{12} - \frac{{\color{red}{\int{4 \cos{\left(5 x \right)} d x}}}}{16} = \frac{\sin{\left(x \right)}}{2} - \frac{\sin{\left(3 x \right)}}{12} - \frac{{\color{red}{\left(4 \int{\cos{\left(5 x \right)} d x}\right)}}}{16}$$

Låt $$$v=5 x$$$ vara.

$$$dv=\left(5 x\right)^{\prime }dx = 5 dx$$$ (stegen kan ses »), och vi har att $$$dx = \frac{dv}{5}$$$.

Integralen kan omskrivas som

$$\frac{\sin{\left(x \right)}}{2} - \frac{\sin{\left(3 x \right)}}{12} - \frac{{\color{red}{\int{\cos{\left(5 x \right)} d x}}}}{4} = \frac{\sin{\left(x \right)}}{2} - \frac{\sin{\left(3 x \right)}}{12} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{5} d v}}}}{4}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ med $$$c=\frac{1}{5}$$$ och $$$f{\left(v \right)} = \cos{\left(v \right)}$$$:

$$\frac{\sin{\left(x \right)}}{2} - \frac{\sin{\left(3 x \right)}}{12} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{5} d v}}}}{4} = \frac{\sin{\left(x \right)}}{2} - \frac{\sin{\left(3 x \right)}}{12} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{5}\right)}}}{4}$$

Integralen av cosinus är $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:

$$\frac{\sin{\left(x \right)}}{2} - \frac{\sin{\left(3 x \right)}}{12} - \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{20} = \frac{\sin{\left(x \right)}}{2} - \frac{\sin{\left(3 x \right)}}{12} - \frac{{\color{red}{\sin{\left(v \right)}}}}{20}$$

Kom ihåg att $$$v=5 x$$$:

$$\frac{\sin{\left(x \right)}}{2} - \frac{\sin{\left(3 x \right)}}{12} - \frac{\sin{\left({\color{red}{v}} \right)}}{20} = \frac{\sin{\left(x \right)}}{2} - \frac{\sin{\left(3 x \right)}}{12} - \frac{\sin{\left({\color{red}{\left(5 x\right)}} \right)}}{20}$$

Alltså,

$$\int{4 \sin^{2}{\left(x \right)} \cos^{3}{\left(x \right)} d x} = \frac{\sin{\left(x \right)}}{2} - \frac{\sin{\left(3 x \right)}}{12} - \frac{\sin{\left(5 x \right)}}{20}$$

Lägg till integrationskonstanten:

$$\int{4 \sin^{2}{\left(x \right)} \cos^{3}{\left(x \right)} d x} = \frac{\sin{\left(x \right)}}{2} - \frac{\sin{\left(3 x \right)}}{12} - \frac{\sin{\left(5 x \right)}}{20}+C$$

Svar

$$$\int 4 \sin^{2}{\left(x \right)} \cos^{3}{\left(x \right)}\, dx = \left(\frac{\sin{\left(x \right)}}{2} - \frac{\sin{\left(3 x \right)}}{12} - \frac{\sin{\left(5 x \right)}}{20}\right) + C$$$A


Please try a new game Rotatly