Integralen av $$$3 t^{2}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int 3 t^{2}\, dt$$$.
Lösning
Tillämpa konstantfaktorregeln $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ med $$$c=3$$$ och $$$f{\left(t \right)} = t^{2}$$$:
$${\color{red}{\int{3 t^{2} d t}}} = {\color{red}{\left(3 \int{t^{2} d t}\right)}}$$
Tillämpa potensregeln $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=2$$$:
$$3 {\color{red}{\int{t^{2} d t}}}=3 {\color{red}{\frac{t^{1 + 2}}{1 + 2}}}=3 {\color{red}{\left(\frac{t^{3}}{3}\right)}}$$
Alltså,
$$\int{3 t^{2} d t} = t^{3}$$
Lägg till integrationskonstanten:
$$\int{3 t^{2} d t} = t^{3}+C$$
Svar
$$$\int 3 t^{2}\, dt = t^{3} + C$$$A