Integralen av $$$\frac{3}{3 x - 1}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$\frac{3}{3 x - 1}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \frac{3}{3 x - 1}\, dx$$$.

Lösning

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=3$$$ och $$$f{\left(x \right)} = \frac{1}{3 x - 1}$$$:

$${\color{red}{\int{\frac{3}{3 x - 1} d x}}} = {\color{red}{\left(3 \int{\frac{1}{3 x - 1} d x}\right)}}$$

Låt $$$u=3 x - 1$$$ vara.

$$$du=\left(3 x - 1\right)^{\prime }dx = 3 dx$$$ (stegen kan ses »), och vi har att $$$dx = \frac{du}{3}$$$.

Integralen blir

$$3 {\color{red}{\int{\frac{1}{3 x - 1} d x}}} = 3 {\color{red}{\int{\frac{1}{3 u} d u}}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=\frac{1}{3}$$$ och $$$f{\left(u \right)} = \frac{1}{u}$$$:

$$3 {\color{red}{\int{\frac{1}{3 u} d u}}} = 3 {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{3}\right)}}$$

Integralen av $$$\frac{1}{u}$$$ är $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$${\color{red}{\int{\frac{1}{u} d u}}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Kom ihåg att $$$u=3 x - 1$$$:

$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\left(3 x - 1\right)}}}\right| \right)}$$

Alltså,

$$\int{\frac{3}{3 x - 1} d x} = \ln{\left(\left|{3 x - 1}\right| \right)}$$

Lägg till integrationskonstanten:

$$\int{\frac{3}{3 x - 1} d x} = \ln{\left(\left|{3 x - 1}\right| \right)}+C$$

Svar

$$$\int \frac{3}{3 x - 1}\, dx = \ln\left(\left|{3 x - 1}\right|\right) + C$$$A


Please try a new game Rotatly