Integralen av $$$\frac{25}{\left(x - 5\right)^{2}}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$\frac{25}{\left(x - 5\right)^{2}}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \frac{25}{\left(x - 5\right)^{2}}\, dx$$$.

Lösning

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=25$$$ och $$$f{\left(x \right)} = \frac{1}{\left(x - 5\right)^{2}}$$$:

$${\color{red}{\int{\frac{25}{\left(x - 5\right)^{2}} d x}}} = {\color{red}{\left(25 \int{\frac{1}{\left(x - 5\right)^{2}} d x}\right)}}$$

Låt $$$u=x - 5$$$ vara.

$$$du=\left(x - 5\right)^{\prime }dx = 1 dx$$$ (stegen kan ses »), och vi har att $$$dx = du$$$.

Alltså,

$$25 {\color{red}{\int{\frac{1}{\left(x - 5\right)^{2}} d x}}} = 25 {\color{red}{\int{\frac{1}{u^{2}} d u}}}$$

Tillämpa potensregeln $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=-2$$$:

$$25 {\color{red}{\int{\frac{1}{u^{2}} d u}}}=25 {\color{red}{\int{u^{-2} d u}}}=25 {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=25 {\color{red}{\left(- u^{-1}\right)}}=25 {\color{red}{\left(- \frac{1}{u}\right)}}$$

Kom ihåg att $$$u=x - 5$$$:

$$- 25 {\color{red}{u}}^{-1} = - 25 {\color{red}{\left(x - 5\right)}}^{-1}$$

Alltså,

$$\int{\frac{25}{\left(x - 5\right)^{2}} d x} = - \frac{25}{x - 5}$$

Lägg till integrationskonstanten:

$$\int{\frac{25}{\left(x - 5\right)^{2}} d x} = - \frac{25}{x - 5}+C$$

Svar

$$$\int \frac{25}{\left(x - 5\right)^{2}}\, dx = - \frac{25}{x - 5} + C$$$A


Please try a new game Rotatly