Integralen av $$$160 t^{3}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int 160 t^{3}\, dt$$$.
Lösning
Tillämpa konstantfaktorregeln $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ med $$$c=160$$$ och $$$f{\left(t \right)} = t^{3}$$$:
$${\color{red}{\int{160 t^{3} d t}}} = {\color{red}{\left(160 \int{t^{3} d t}\right)}}$$
Tillämpa potensregeln $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=3$$$:
$$160 {\color{red}{\int{t^{3} d t}}}=160 {\color{red}{\frac{t^{1 + 3}}{1 + 3}}}=160 {\color{red}{\left(\frac{t^{4}}{4}\right)}}$$
Alltså,
$$\int{160 t^{3} d t} = 40 t^{4}$$
Lägg till integrationskonstanten:
$$\int{160 t^{3} d t} = 40 t^{4}+C$$
Svar
$$$\int 160 t^{3}\, dt = 40 t^{4} + C$$$A