Integralen av $$$6 x$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int 6 x\, dx$$$.
Lösning
Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=6$$$ och $$$f{\left(x \right)} = x$$$:
$${\color{red}{\int{6 x d x}}} = {\color{red}{\left(6 \int{x d x}\right)}}$$
Tillämpa potensregeln $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=1$$$:
$$6 {\color{red}{\int{x d x}}}=6 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=6 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Alltså,
$$\int{6 x d x} = 3 x^{2}$$
Lägg till integrationskonstanten:
$$\int{6 x d x} = 3 x^{2}+C$$
Svar
$$$\int 6 x\, dx = 3 x^{2} + C$$$A