Integralen av $$$- 10 \left(1 - x^{3}\right) \cot{\left(1 \right)}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$- 10 \left(1 - x^{3}\right) \cot{\left(1 \right)}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \left(- 10 \left(1 - x^{3}\right) \cot{\left(1 \right)}\right)\, dx$$$.

De trigonometriska funktionerna förväntar sig att argumentet är i radianer. För att ange argumentet i grader, multiplicera det med pi/180, t.ex. skriv 45° som 45*pi/180, eller använd motsvarande funktion med ett 'd' tillagt, t.ex. skriv sin(45°) som sind(45).

Lösning

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=- 10 \cot{\left(1 \right)}$$$ och $$$f{\left(x \right)} = 1 - x^{3}$$$:

$${\color{red}{\int{\left(- 10 \left(1 - x^{3}\right) \cot{\left(1 \right)}\right)d x}}} = {\color{red}{\left(- 10 \cot{\left(1 \right)} \int{\left(1 - x^{3}\right)d x}\right)}}$$

Integrera termvis:

$$- 10 \cot{\left(1 \right)} {\color{red}{\int{\left(1 - x^{3}\right)d x}}} = - 10 \cot{\left(1 \right)} {\color{red}{\left(\int{1 d x} - \int{x^{3} d x}\right)}}$$

Tillämpa konstantregeln $$$\int c\, dx = c x$$$ med $$$c=1$$$:

$$- 10 \cot{\left(1 \right)} \left(- \int{x^{3} d x} + {\color{red}{\int{1 d x}}}\right) = - 10 \cot{\left(1 \right)} \left(- \int{x^{3} d x} + {\color{red}{x}}\right)$$

Tillämpa potensregeln $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=3$$$:

$$- 10 \cot{\left(1 \right)} \left(x - {\color{red}{\int{x^{3} d x}}}\right)=- 10 \cot{\left(1 \right)} \left(x - {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}\right)=- 10 \cot{\left(1 \right)} \left(x - {\color{red}{\left(\frac{x^{4}}{4}\right)}}\right)$$

Alltså,

$$\int{\left(- 10 \left(1 - x^{3}\right) \cot{\left(1 \right)}\right)d x} = - 10 \left(- \frac{x^{4}}{4} + x\right) \cot{\left(1 \right)}$$

Förenkla:

$$\int{\left(- 10 \left(1 - x^{3}\right) \cot{\left(1 \right)}\right)d x} = \frac{5 x \left(x^{3} - 4\right) \cot{\left(1 \right)}}{2}$$

Lägg till integrationskonstanten:

$$\int{\left(- 10 \left(1 - x^{3}\right) \cot{\left(1 \right)}\right)d x} = \frac{5 x \left(x^{3} - 4\right) \cot{\left(1 \right)}}{2}+C$$

Svar

$$$\int \left(- 10 \left(1 - x^{3}\right) \cot{\left(1 \right)}\right)\, dx = \frac{5 x \left(x^{3} - 4\right) \cot{\left(1 \right)}}{2} + C$$$A


Please try a new game Rotatly