Integralen av $$$\left(- a + x\right)^{- p}$$$ med avseende på $$$x$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \left(- a + x\right)^{- p}\, dx$$$.
Lösning
Inmatningen skrivs om: $$$\int{\left(- a + x\right)^{- p} d x}=\int{\left(\frac{1}{- a + x}\right)^{p} d x}$$$.
Låt $$$u=- a + x$$$ vara.
Då $$$du=\left(- a + x\right)^{\prime }dx = 1 dx$$$ (stegen kan ses »), och vi har att $$$dx = du$$$.
Alltså,
$${\color{red}{\int{\left(\frac{1}{- a + x}\right)^{p} d x}}} = {\color{red}{\int{\left(\frac{1}{u}\right)^{p} d u}}}$$
Låt $$$v=\frac{1}{u}$$$ vara.
Då $$$dv=\left(\frac{1}{u}\right)^{\prime }du = - \frac{1}{u^{2}} du$$$ (stegen kan ses »), och vi har att $$$\frac{du}{u^{2}} = - dv$$$.
Alltså,
$${\color{red}{\int{\left(\frac{1}{u}\right)^{p} d u}}} = {\color{red}{\int{\left(- v^{p - 2}\right)d v}}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ med $$$c=-1$$$ och $$$f{\left(v \right)} = v^{p - 2}$$$:
$${\color{red}{\int{\left(- v^{p - 2}\right)d v}}} = {\color{red}{\left(- \int{v^{p - 2} d v}\right)}}$$
Tillämpa potensregeln $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=p - 2$$$:
$$- {\color{red}{\int{v^{p - 2} d v}}}=- {\color{red}{\frac{v^{\left(p - 2\right) + 1}}{\left(p - 2\right) + 1}}}=- {\color{red}{\frac{v^{p - 1}}{p - 1}}}$$
Kom ihåg att $$$v=\frac{1}{u}$$$:
$$- \frac{{\color{red}{v}}^{p - 1}}{p - 1} = - \frac{{\color{red}{\frac{1}{u}}}^{p - 1}}{p - 1}$$
Kom ihåg att $$$u=- a + x$$$:
$$- \frac{\left({\color{red}{u}}^{-1}\right)^{p - 1}}{p - 1} = - \frac{\left({\color{red}{\left(- a + x\right)}}^{-1}\right)^{p - 1}}{p - 1}$$
Alltså,
$$\int{\left(\frac{1}{- a + x}\right)^{p} d x} = - \frac{\left(\frac{1}{- a + x}\right)^{p - 1}}{p - 1}$$
Lägg till integrationskonstanten:
$$\int{\left(\frac{1}{- a + x}\right)^{p} d x} = - \frac{\left(\frac{1}{- a + x}\right)^{p - 1}}{p - 1}+C$$
Svar
$$$\int \left(- a + x\right)^{- p}\, dx = - \frac{\left(\frac{1}{- a + x}\right)^{p - 1}}{p - 1} + C$$$A