Integralen av $$$\frac{1}{p \left(1 - \frac{p}{n}\right)}$$$ med avseende på $$$n$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \frac{1}{p \left(1 - \frac{p}{n}\right)}\, dn$$$.
Lösning
Tillämpa konstantfaktorregeln $$$\int c f{\left(n \right)}\, dn = c \int f{\left(n \right)}\, dn$$$ med $$$c=\frac{1}{p}$$$ och $$$f{\left(n \right)} = \frac{1}{1 - \frac{p}{n}}$$$:
$${\color{red}{\int{\frac{1}{p \left(1 - \frac{p}{n}\right)} d n}}} = {\color{red}{\frac{\int{\frac{1}{1 - \frac{p}{n}} d n}}{p}}}$$
Simplify:
$$\frac{{\color{red}{\int{\frac{1}{1 - \frac{p}{n}} d n}}}}{p} = \frac{{\color{red}{\int{\frac{n}{n - p} d n}}}}{p}$$
Skriv om och dela upp bråket:
$$\frac{{\color{red}{\int{\frac{n}{n - p} d n}}}}{p} = \frac{{\color{red}{\int{\left(\frac{p}{n - p} + 1\right)d n}}}}{p}$$
Integrera termvis:
$$\frac{{\color{red}{\int{\left(\frac{p}{n - p} + 1\right)d n}}}}{p} = \frac{{\color{red}{\left(\int{1 d n} + \int{\frac{p}{n - p} d n}\right)}}}{p}$$
Tillämpa konstantregeln $$$\int c\, dn = c n$$$ med $$$c=1$$$:
$$\frac{\int{\frac{p}{n - p} d n} + {\color{red}{\int{1 d n}}}}{p} = \frac{\int{\frac{p}{n - p} d n} + {\color{red}{n}}}{p}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(n \right)}\, dn = c \int f{\left(n \right)}\, dn$$$ med $$$c=p$$$ och $$$f{\left(n \right)} = \frac{1}{n - p}$$$:
$$\frac{n + {\color{red}{\int{\frac{p}{n - p} d n}}}}{p} = \frac{n + {\color{red}{p \int{\frac{1}{n - p} d n}}}}{p}$$
Låt $$$u=n - p$$$ vara.
Då $$$du=\left(n - p\right)^{\prime }dn = 1 dn$$$ (stegen kan ses »), och vi har att $$$dn = du$$$.
Alltså,
$$\frac{n + p {\color{red}{\int{\frac{1}{n - p} d n}}}}{p} = \frac{n + p {\color{red}{\int{\frac{1}{u} d u}}}}{p}$$
Integralen av $$$\frac{1}{u}$$$ är $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{n + p {\color{red}{\int{\frac{1}{u} d u}}}}{p} = \frac{n + p {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{p}$$
Kom ihåg att $$$u=n - p$$$:
$$\frac{n + p \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{p} = \frac{n + p \ln{\left(\left|{{\color{red}{\left(n - p\right)}}}\right| \right)}}{p}$$
Alltså,
$$\int{\frac{1}{p \left(1 - \frac{p}{n}\right)} d n} = \frac{n + p \ln{\left(\left|{n - p}\right| \right)}}{p}$$
Förenkla:
$$\int{\frac{1}{p \left(1 - \frac{p}{n}\right)} d n} = \frac{n}{p} + \ln{\left(\left|{n - p}\right| \right)}$$
Lägg till integrationskonstanten:
$$\int{\frac{1}{p \left(1 - \frac{p}{n}\right)} d n} = \frac{n}{p} + \ln{\left(\left|{n - p}\right| \right)}+C$$
Svar
$$$\int \frac{1}{p \left(1 - \frac{p}{n}\right)}\, dn = \left(\frac{n}{p} + \ln\left(\left|{n - p}\right|\right)\right) + C$$$A