Integralen av $$$\frac{\sqrt{11} e^{- \frac{x}{2}}}{22}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \frac{\sqrt{11} e^{- \frac{x}{2}}}{22}\, dx$$$.
Lösning
Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=\frac{\sqrt{11}}{22}$$$ och $$$f{\left(x \right)} = e^{- \frac{x}{2}}$$$:
$${\color{red}{\int{\frac{\sqrt{11} e^{- \frac{x}{2}}}{22} d x}}} = {\color{red}{\left(\frac{\sqrt{11} \int{e^{- \frac{x}{2}} d x}}{22}\right)}}$$
Låt $$$u=- \frac{x}{2}$$$ vara.
Då $$$du=\left(- \frac{x}{2}\right)^{\prime }dx = - \frac{dx}{2}$$$ (stegen kan ses »), och vi har att $$$dx = - 2 du$$$.
Integralen kan omskrivas som
$$\frac{\sqrt{11} {\color{red}{\int{e^{- \frac{x}{2}} d x}}}}{22} = \frac{\sqrt{11} {\color{red}{\int{\left(- 2 e^{u}\right)d u}}}}{22}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=-2$$$ och $$$f{\left(u \right)} = e^{u}$$$:
$$\frac{\sqrt{11} {\color{red}{\int{\left(- 2 e^{u}\right)d u}}}}{22} = \frac{\sqrt{11} {\color{red}{\left(- 2 \int{e^{u} d u}\right)}}}{22}$$
Integralen av den exponentiella funktionen är $$$\int{e^{u} d u} = e^{u}$$$:
$$- \frac{\sqrt{11} {\color{red}{\int{e^{u} d u}}}}{11} = - \frac{\sqrt{11} {\color{red}{e^{u}}}}{11}$$
Kom ihåg att $$$u=- \frac{x}{2}$$$:
$$- \frac{\sqrt{11} e^{{\color{red}{u}}}}{11} = - \frac{\sqrt{11} e^{{\color{red}{\left(- \frac{x}{2}\right)}}}}{11}$$
Alltså,
$$\int{\frac{\sqrt{11} e^{- \frac{x}{2}}}{22} d x} = - \frac{\sqrt{11} e^{- \frac{x}{2}}}{11}$$
Lägg till integrationskonstanten:
$$\int{\frac{\sqrt{11} e^{- \frac{x}{2}}}{22} d x} = - \frac{\sqrt{11} e^{- \frac{x}{2}}}{11}+C$$
Svar
$$$\int \frac{\sqrt{11} e^{- \frac{x}{2}}}{22}\, dx = - \frac{\sqrt{11} e^{- \frac{x}{2}}}{11} + C$$$A