Integralen av $$$- \cos{\left(\frac{x}{y} \right)}$$$ med avseende på $$$x$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \left(- \cos{\left(\frac{x}{y} \right)}\right)\, dx$$$.
Lösning
Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=-1$$$ och $$$f{\left(x \right)} = \cos{\left(\frac{x}{y} \right)}$$$:
$${\color{red}{\int{\left(- \cos{\left(\frac{x}{y} \right)}\right)d x}}} = {\color{red}{\left(- \int{\cos{\left(\frac{x}{y} \right)} d x}\right)}}$$
Låt $$$u=\frac{x}{y}$$$ vara.
Då $$$du=\left(\frac{x}{y}\right)^{\prime }dx = \frac{dx}{y}$$$ (stegen kan ses »), och vi har att $$$dx = y du$$$.
Integralen kan omskrivas som
$$- {\color{red}{\int{\cos{\left(\frac{x}{y} \right)} d x}}} = - {\color{red}{\int{y \cos{\left(u \right)} d u}}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=y$$$ och $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$- {\color{red}{\int{y \cos{\left(u \right)} d u}}} = - {\color{red}{y \int{\cos{\left(u \right)} d u}}}$$
Integralen av cosinus är $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$- y {\color{red}{\int{\cos{\left(u \right)} d u}}} = - y {\color{red}{\sin{\left(u \right)}}}$$
Kom ihåg att $$$u=\frac{x}{y}$$$:
$$- y \sin{\left({\color{red}{u}} \right)} = - y \sin{\left({\color{red}{\frac{x}{y}}} \right)}$$
Alltså,
$$\int{\left(- \cos{\left(\frac{x}{y} \right)}\right)d x} = - y \sin{\left(\frac{x}{y} \right)}$$
Lägg till integrationskonstanten:
$$\int{\left(- \cos{\left(\frac{x}{y} \right)}\right)d x} = - y \sin{\left(\frac{x}{y} \right)}+C$$
Svar
$$$\int \left(- \cos{\left(\frac{x}{y} \right)}\right)\, dx = - y \sin{\left(\frac{x}{y} \right)} + C$$$A