Integralen av $$$- 6 \ln\left(- 2 x\right)$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \left(- 6 \ln\left(- 2 x\right)\right)\, dx$$$.
Lösning
Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=-6$$$ och $$$f{\left(x \right)} = \ln{\left(- 2 x \right)}$$$:
$${\color{red}{\int{\left(- 6 \ln{\left(- 2 x \right)}\right)d x}}} = {\color{red}{\left(- 6 \int{\ln{\left(- 2 x \right)} d x}\right)}}$$
Låt $$$u=- 2 x$$$ vara.
Då $$$du=\left(- 2 x\right)^{\prime }dx = - 2 dx$$$ (stegen kan ses »), och vi har att $$$dx = - \frac{du}{2}$$$.
Alltså,
$$- 6 {\color{red}{\int{\ln{\left(- 2 x \right)} d x}}} = - 6 {\color{red}{\int{\left(- \frac{\ln{\left(u \right)}}{2}\right)d u}}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=- \frac{1}{2}$$$ och $$$f{\left(u \right)} = \ln{\left(u \right)}$$$:
$$- 6 {\color{red}{\int{\left(- \frac{\ln{\left(u \right)}}{2}\right)d u}}} = - 6 {\color{red}{\left(- \frac{\int{\ln{\left(u \right)} d u}}{2}\right)}}$$
För integralen $$$\int{\ln{\left(u \right)} d u}$$$, använd partiell integration $$$\int \operatorname{\kappa} \operatorname{dv} = \operatorname{\kappa}\operatorname{v} - \int \operatorname{v} \operatorname{d\kappa}$$$.
Låt $$$\operatorname{\kappa}=\ln{\left(u \right)}$$$ och $$$\operatorname{dv}=du$$$.
Då gäller $$$\operatorname{d\kappa}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (stegen kan ses ») och $$$\operatorname{v}=\int{1 d u}=u$$$ (stegen kan ses »).
Alltså,
$$3 {\color{red}{\int{\ln{\left(u \right)} d u}}}=3 {\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}=3 {\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}$$
Tillämpa konstantregeln $$$\int c\, du = c u$$$ med $$$c=1$$$:
$$3 u \ln{\left(u \right)} - 3 {\color{red}{\int{1 d u}}} = 3 u \ln{\left(u \right)} - 3 {\color{red}{u}}$$
Kom ihåg att $$$u=- 2 x$$$:
$$- 3 {\color{red}{u}} + 3 {\color{red}{u}} \ln{\left({\color{red}{u}} \right)} = - 3 {\color{red}{\left(- 2 x\right)}} + 3 {\color{red}{\left(- 2 x\right)}} \ln{\left({\color{red}{\left(- 2 x\right)}} \right)}$$
Alltså,
$$\int{\left(- 6 \ln{\left(- 2 x \right)}\right)d x} = - 6 x \ln{\left(- 2 x \right)} + 6 x$$
Förenkla:
$$\int{\left(- 6 \ln{\left(- 2 x \right)}\right)d x} = 6 x \left(- \ln{\left(- x \right)} - \ln{\left(2 \right)} + 1\right)$$
Lägg till integrationskonstanten:
$$\int{\left(- 6 \ln{\left(- 2 x \right)}\right)d x} = 6 x \left(- \ln{\left(- x \right)} - \ln{\left(2 \right)} + 1\right)+C$$
Svar
$$$\int \left(- 6 \ln\left(- 2 x\right)\right)\, dx = 6 x \left(- \ln\left(- x\right) - \ln\left(2\right) + 1\right) + C$$$A