Integralen av $$$- \frac{x}{2} - 3 \ln\left(- x\right)$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \left(- \frac{x}{2} - 3 \ln\left(- x\right)\right)\, dx$$$.
Lösning
Integrera termvis:
$${\color{red}{\int{\left(- \frac{x}{2} - 3 \ln{\left(- x \right)}\right)d x}}} = {\color{red}{\left(- \int{\frac{x}{2} d x} - \int{3 \ln{\left(- x \right)} d x}\right)}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=3$$$ och $$$f{\left(x \right)} = \ln{\left(- x \right)}$$$:
$$- \int{\frac{x}{2} d x} - {\color{red}{\int{3 \ln{\left(- x \right)} d x}}} = - \int{\frac{x}{2} d x} - {\color{red}{\left(3 \int{\ln{\left(- x \right)} d x}\right)}}$$
Låt $$$u=- x$$$ vara.
Då $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (stegen kan ses »), och vi har att $$$dx = - du$$$.
Alltså,
$$- \int{\frac{x}{2} d x} - 3 {\color{red}{\int{\ln{\left(- x \right)} d x}}} = - \int{\frac{x}{2} d x} - 3 {\color{red}{\int{\left(- \ln{\left(u \right)}\right)d u}}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=-1$$$ och $$$f{\left(u \right)} = \ln{\left(u \right)}$$$:
$$- \int{\frac{x}{2} d x} - 3 {\color{red}{\int{\left(- \ln{\left(u \right)}\right)d u}}} = - \int{\frac{x}{2} d x} - 3 {\color{red}{\left(- \int{\ln{\left(u \right)} d u}\right)}}$$
För integralen $$$\int{\ln{\left(u \right)} d u}$$$, använd partiell integration $$$\int \operatorname{\kappa} \operatorname{dv} = \operatorname{\kappa}\operatorname{v} - \int \operatorname{v} \operatorname{d\kappa}$$$.
Låt $$$\operatorname{\kappa}=\ln{\left(u \right)}$$$ och $$$\operatorname{dv}=du$$$.
Då gäller $$$\operatorname{d\kappa}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (stegen kan ses ») och $$$\operatorname{v}=\int{1 d u}=u$$$ (stegen kan ses »).
Alltså,
$$- \int{\frac{x}{2} d x} + 3 {\color{red}{\int{\ln{\left(u \right)} d u}}}=- \int{\frac{x}{2} d x} + 3 {\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}=- \int{\frac{x}{2} d x} + 3 {\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}$$
Tillämpa konstantregeln $$$\int c\, du = c u$$$ med $$$c=1$$$:
$$3 u \ln{\left(u \right)} - \int{\frac{x}{2} d x} - 3 {\color{red}{\int{1 d u}}} = 3 u \ln{\left(u \right)} - \int{\frac{x}{2} d x} - 3 {\color{red}{u}}$$
Kom ihåg att $$$u=- x$$$:
$$- \int{\frac{x}{2} d x} - 3 {\color{red}{u}} + 3 {\color{red}{u}} \ln{\left({\color{red}{u}} \right)} = - \int{\frac{x}{2} d x} - 3 {\color{red}{\left(- x\right)}} + 3 {\color{red}{\left(- x\right)}} \ln{\left({\color{red}{\left(- x\right)}} \right)}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=\frac{1}{2}$$$ och $$$f{\left(x \right)} = x$$$:
$$- 3 x \ln{\left(- x \right)} + 3 x - {\color{red}{\int{\frac{x}{2} d x}}} = - 3 x \ln{\left(- x \right)} + 3 x - {\color{red}{\left(\frac{\int{x d x}}{2}\right)}}$$
Tillämpa potensregeln $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=1$$$:
$$- 3 x \ln{\left(- x \right)} + 3 x - \frac{{\color{red}{\int{x d x}}}}{2}=- 3 x \ln{\left(- x \right)} + 3 x - \frac{{\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{2}=- 3 x \ln{\left(- x \right)} + 3 x - \frac{{\color{red}{\left(\frac{x^{2}}{2}\right)}}}{2}$$
Alltså,
$$\int{\left(- \frac{x}{2} - 3 \ln{\left(- x \right)}\right)d x} = - \frac{x^{2}}{4} - 3 x \ln{\left(- x \right)} + 3 x$$
Förenkla:
$$\int{\left(- \frac{x}{2} - 3 \ln{\left(- x \right)}\right)d x} = \frac{x \left(- x - 12 \ln{\left(- x \right)} + 12\right)}{4}$$
Lägg till integrationskonstanten:
$$\int{\left(- \frac{x}{2} - 3 \ln{\left(- x \right)}\right)d x} = \frac{x \left(- x - 12 \ln{\left(- x \right)} + 12\right)}{4}+C$$
Svar
$$$\int \left(- \frac{x}{2} - 3 \ln\left(- x\right)\right)\, dx = \frac{x \left(- x - 12 \ln\left(- x\right) + 12\right)}{4} + C$$$A