Integralen av $$$\sin{\left(t \right)} \sqrt{\cos{\left(t \right)}}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$\sin{\left(t \right)} \sqrt{\cos{\left(t \right)}}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \sin{\left(t \right)} \sqrt{\cos{\left(t \right)}}\, dt$$$.

Lösning

Låt $$$u=\cos{\left(t \right)}$$$ vara.

$$$du=\left(\cos{\left(t \right)}\right)^{\prime }dt = - \sin{\left(t \right)} dt$$$ (stegen kan ses »), och vi har att $$$\sin{\left(t \right)} dt = - du$$$.

Alltså,

$${\color{red}{\int{\sin{\left(t \right)} \sqrt{\cos{\left(t \right)}} d t}}} = {\color{red}{\int{\left(- \sqrt{u}\right)d u}}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=-1$$$ och $$$f{\left(u \right)} = \sqrt{u}$$$:

$${\color{red}{\int{\left(- \sqrt{u}\right)d u}}} = {\color{red}{\left(- \int{\sqrt{u} d u}\right)}}$$

Tillämpa potensregeln $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=\frac{1}{2}$$$:

$$- {\color{red}{\int{\sqrt{u} d u}}}=- {\color{red}{\int{u^{\frac{1}{2}} d u}}}=- {\color{red}{\frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}=- {\color{red}{\left(\frac{2 u^{\frac{3}{2}}}{3}\right)}}$$

Kom ihåg att $$$u=\cos{\left(t \right)}$$$:

$$- \frac{2 {\color{red}{u}}^{\frac{3}{2}}}{3} = - \frac{2 {\color{red}{\cos{\left(t \right)}}}^{\frac{3}{2}}}{3}$$

Alltså,

$$\int{\sin{\left(t \right)} \sqrt{\cos{\left(t \right)}} d t} = - \frac{2 \cos^{\frac{3}{2}}{\left(t \right)}}{3}$$

Lägg till integrationskonstanten:

$$\int{\sin{\left(t \right)} \sqrt{\cos{\left(t \right)}} d t} = - \frac{2 \cos^{\frac{3}{2}}{\left(t \right)}}{3}+C$$

Svar

$$$\int \sin{\left(t \right)} \sqrt{\cos{\left(t \right)}}\, dt = - \frac{2 \cos^{\frac{3}{2}}{\left(t \right)}}{3} + C$$$A


Please try a new game Rotatly