Integralen av $$$\frac{\sqrt{x^{2} - 1}}{x^{2}}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$\frac{\sqrt{x^{2} - 1}}{x^{2}}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \frac{\sqrt{x^{2} - 1}}{x^{2}}\, dx$$$.

Lösning

Låt $$$x=\cosh{\left(u \right)}$$$ vara.

$$$dx=\left(\cosh{\left(u \right)}\right)^{\prime }du = \sinh{\left(u \right)} du$$$ (stegen kan ses »).

Det följer också att $$$u=\operatorname{acosh}{\left(x \right)}$$$.

Integranden blir

$$$\frac{\sqrt{x^{2} - 1}}{x^{2}} = \frac{\sqrt{\cosh^{2}{\left( u \right)} - 1}}{\cosh^{2}{\left( u \right)}}$$$

Använd identiteten $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:

$$$\frac{\sqrt{\cosh^{2}{\left( u \right)} - 1}}{\cosh^{2}{\left( u \right)}}=\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh^{2}{\left( u \right)}}$$$

Om vi antar att $$$\sinh{\left( u \right)} \ge 0$$$, erhåller vi följande:

$$$\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh^{2}{\left( u \right)}} = \frac{\sinh{\left( u \right)}}{\cosh^{2}{\left( u \right)}}$$$

Integralen blir

$${\color{red}{\int{\frac{\sqrt{x^{2} - 1}}{x^{2}} d x}}} = {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{\cosh^{2}{\left(u \right)}} d u}}}$$

Skriv om i termer av hyperbolisk tangens:

$${\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{\cosh^{2}{\left(u \right)}} d u}}} = {\color{red}{\int{\tanh^{2}{\left(u \right)} d u}}}$$

Låt $$$v=\tanh{\left(u \right)}$$$ vara.

$$$dv=\left(\tanh{\left(u \right)}\right)^{\prime }du = \operatorname{sech}^{2}{\left(u \right)} du$$$ (stegen kan ses »), och vi har att $$$\operatorname{sech}^{2}{\left(u \right)} du = dv$$$.

Integralen blir

$${\color{red}{\int{\tanh^{2}{\left(u \right)} d u}}} = {\color{red}{\int{\left(- \frac{v^{2}}{v^{2} - 1}\right)d v}}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ med $$$c=-1$$$ och $$$f{\left(v \right)} = \frac{v^{2}}{v^{2} - 1}$$$:

$${\color{red}{\int{\left(- \frac{v^{2}}{v^{2} - 1}\right)d v}}} = {\color{red}{\left(- \int{\frac{v^{2}}{v^{2} - 1} d v}\right)}}$$

Skriv om och dela upp bråket:

$$- {\color{red}{\int{\frac{v^{2}}{v^{2} - 1} d v}}} = - {\color{red}{\int{\left(1 + \frac{1}{v^{2} - 1}\right)d v}}}$$

Integrera termvis:

$$- {\color{red}{\int{\left(1 + \frac{1}{v^{2} - 1}\right)d v}}} = - {\color{red}{\left(\int{1 d v} + \int{\frac{1}{v^{2} - 1} d v}\right)}}$$

Tillämpa konstantregeln $$$\int c\, dv = c v$$$ med $$$c=1$$$:

$$- \int{\frac{1}{v^{2} - 1} d v} - {\color{red}{\int{1 d v}}} = - \int{\frac{1}{v^{2} - 1} d v} - {\color{red}{v}}$$

Utför partialbråksuppdelning (stegen kan ses »):

$$- v - {\color{red}{\int{\frac{1}{v^{2} - 1} d v}}} = - v - {\color{red}{\int{\left(- \frac{1}{2 \left(v + 1\right)} + \frac{1}{2 \left(v - 1\right)}\right)d v}}}$$

Integrera termvis:

$$- v - {\color{red}{\int{\left(- \frac{1}{2 \left(v + 1\right)} + \frac{1}{2 \left(v - 1\right)}\right)d v}}} = - v - {\color{red}{\left(\int{\frac{1}{2 \left(v - 1\right)} d v} - \int{\frac{1}{2 \left(v + 1\right)} d v}\right)}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ med $$$c=\frac{1}{2}$$$ och $$$f{\left(v \right)} = \frac{1}{v - 1}$$$:

$$- v + \int{\frac{1}{2 \left(v + 1\right)} d v} - {\color{red}{\int{\frac{1}{2 \left(v - 1\right)} d v}}} = - v + \int{\frac{1}{2 \left(v + 1\right)} d v} - {\color{red}{\left(\frac{\int{\frac{1}{v - 1} d v}}{2}\right)}}$$

Låt $$$w=v - 1$$$ vara.

$$$dw=\left(v - 1\right)^{\prime }dv = 1 dv$$$ (stegen kan ses »), och vi har att $$$dv = dw$$$.

Alltså,

$$- v + \int{\frac{1}{2 \left(v + 1\right)} d v} - \frac{{\color{red}{\int{\frac{1}{v - 1} d v}}}}{2} = - v + \int{\frac{1}{2 \left(v + 1\right)} d v} - \frac{{\color{red}{\int{\frac{1}{w} d w}}}}{2}$$

Integralen av $$$\frac{1}{w}$$$ är $$$\int{\frac{1}{w} d w} = \ln{\left(\left|{w}\right| \right)}$$$:

$$- v + \int{\frac{1}{2 \left(v + 1\right)} d v} - \frac{{\color{red}{\int{\frac{1}{w} d w}}}}{2} = - v + \int{\frac{1}{2 \left(v + 1\right)} d v} - \frac{{\color{red}{\ln{\left(\left|{w}\right| \right)}}}}{2}$$

Kom ihåg att $$$w=v - 1$$$:

$$- v - \frac{\ln{\left(\left|{{\color{red}{w}}}\right| \right)}}{2} + \int{\frac{1}{2 \left(v + 1\right)} d v} = - v - \frac{\ln{\left(\left|{{\color{red}{\left(v - 1\right)}}}\right| \right)}}{2} + \int{\frac{1}{2 \left(v + 1\right)} d v}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ med $$$c=\frac{1}{2}$$$ och $$$f{\left(v \right)} = \frac{1}{v + 1}$$$:

$$- v - \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + {\color{red}{\int{\frac{1}{2 \left(v + 1\right)} d v}}} = - v - \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + {\color{red}{\left(\frac{\int{\frac{1}{v + 1} d v}}{2}\right)}}$$

Låt $$$w=v + 1$$$ vara.

$$$dw=\left(v + 1\right)^{\prime }dv = 1 dv$$$ (stegen kan ses »), och vi har att $$$dv = dw$$$.

Integralen blir

$$- v - \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{v + 1} d v}}}}{2} = - v - \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{w} d w}}}}{2}$$

Integralen av $$$\frac{1}{w}$$$ är $$$\int{\frac{1}{w} d w} = \ln{\left(\left|{w}\right| \right)}$$$:

$$- v - \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{w} d w}}}}{2} = - v - \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + \frac{{\color{red}{\ln{\left(\left|{w}\right| \right)}}}}{2}$$

Kom ihåg att $$$w=v + 1$$$:

$$- v - \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{{\color{red}{w}}}\right| \right)}}{2} = - v - \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{{\color{red}{\left(v + 1\right)}}}\right| \right)}}{2}$$

Kom ihåg att $$$v=\tanh{\left(u \right)}$$$:

$$- \frac{\ln{\left(\left|{-1 + {\color{red}{v}}}\right| \right)}}{2} + \frac{\ln{\left(\left|{1 + {\color{red}{v}}}\right| \right)}}{2} - {\color{red}{v}} = - \frac{\ln{\left(\left|{-1 + {\color{red}{\tanh{\left(u \right)}}}}\right| \right)}}{2} + \frac{\ln{\left(\left|{1 + {\color{red}{\tanh{\left(u \right)}}}}\right| \right)}}{2} - {\color{red}{\tanh{\left(u \right)}}}$$

Kom ihåg att $$$u=\operatorname{acosh}{\left(x \right)}$$$:

$$- \frac{\ln{\left(\left|{-1 + \tanh{\left({\color{red}{u}} \right)}}\right| \right)}}{2} + \frac{\ln{\left(\left|{1 + \tanh{\left({\color{red}{u}} \right)}}\right| \right)}}{2} - \tanh{\left({\color{red}{u}} \right)} = - \frac{\ln{\left(\left|{-1 + \tanh{\left({\color{red}{\operatorname{acosh}{\left(x \right)}}} \right)}}\right| \right)}}{2} + \frac{\ln{\left(\left|{1 + \tanh{\left({\color{red}{\operatorname{acosh}{\left(x \right)}}} \right)}}\right| \right)}}{2} - \tanh{\left({\color{red}{\operatorname{acosh}{\left(x \right)}}} \right)}$$

Alltså,

$$\int{\frac{\sqrt{x^{2} - 1}}{x^{2}} d x} = - \frac{\ln{\left(\left|{1 - \frac{\sqrt{x - 1} \sqrt{x + 1}}{x}}\right| \right)}}{2} + \frac{\ln{\left(\left|{1 + \frac{\sqrt{x - 1} \sqrt{x + 1}}{x}}\right| \right)}}{2} - \frac{\sqrt{x - 1} \sqrt{x + 1}}{x}$$

Förenkla:

$$\int{\frac{\sqrt{x^{2} - 1}}{x^{2}} d x} = \frac{\frac{x \left(- \ln{\left(\left|{\frac{x - \sqrt{x - 1} \sqrt{x + 1}}{x}}\right| \right)} + \ln{\left(\left|{\frac{x + \sqrt{x - 1} \sqrt{x + 1}}{x}}\right| \right)}\right)}{2} - \sqrt{x - 1} \sqrt{x + 1}}{x}$$

Lägg till integrationskonstanten:

$$\int{\frac{\sqrt{x^{2} - 1}}{x^{2}} d x} = \frac{\frac{x \left(- \ln{\left(\left|{\frac{x - \sqrt{x - 1} \sqrt{x + 1}}{x}}\right| \right)} + \ln{\left(\left|{\frac{x + \sqrt{x - 1} \sqrt{x + 1}}{x}}\right| \right)}\right)}{2} - \sqrt{x - 1} \sqrt{x + 1}}{x}+C$$

Svar

$$$\int \frac{\sqrt{x^{2} - 1}}{x^{2}}\, dx = \frac{\frac{x \left(- \ln\left(\left|{\frac{x - \sqrt{x - 1} \sqrt{x + 1}}{x}}\right|\right) + \ln\left(\left|{\frac{x + \sqrt{x - 1} \sqrt{x + 1}}{x}}\right|\right)\right)}{2} - \sqrt{x - 1} \sqrt{x + 1}}{x} + C$$$A


Please try a new game Rotatly