Integralen av $$$18 \pi^{2} \tan{\left(18 x \right)}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int 18 \pi^{2} \tan{\left(18 x \right)}\, dx$$$.
Lösning
Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=18 \pi^{2}$$$ och $$$f{\left(x \right)} = \tan{\left(18 x \right)}$$$:
$${\color{red}{\int{18 \pi^{2} \tan{\left(18 x \right)} d x}}} = {\color{red}{\left(18 \pi^{2} \int{\tan{\left(18 x \right)} d x}\right)}}$$
Låt $$$u=18 x$$$ vara.
Då $$$du=\left(18 x\right)^{\prime }dx = 18 dx$$$ (stegen kan ses »), och vi har att $$$dx = \frac{du}{18}$$$.
Alltså,
$$18 \pi^{2} {\color{red}{\int{\tan{\left(18 x \right)} d x}}} = 18 \pi^{2} {\color{red}{\int{\frac{\tan{\left(u \right)}}{18} d u}}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=\frac{1}{18}$$$ och $$$f{\left(u \right)} = \tan{\left(u \right)}$$$:
$$18 \pi^{2} {\color{red}{\int{\frac{\tan{\left(u \right)}}{18} d u}}} = 18 \pi^{2} {\color{red}{\left(\frac{\int{\tan{\left(u \right)} d u}}{18}\right)}}$$
Skriv om tangenten som $$$\tan\left( u \right)=\frac{\sin\left( u \right)}{\cos\left( u \right)}$$$:
$$\pi^{2} {\color{red}{\int{\tan{\left(u \right)} d u}}} = \pi^{2} {\color{red}{\int{\frac{\sin{\left(u \right)}}{\cos{\left(u \right)}} d u}}}$$
Låt $$$v=\cos{\left(u \right)}$$$ vara.
Då $$$dv=\left(\cos{\left(u \right)}\right)^{\prime }du = - \sin{\left(u \right)} du$$$ (stegen kan ses »), och vi har att $$$\sin{\left(u \right)} du = - dv$$$.
Integralen blir
$$\pi^{2} {\color{red}{\int{\frac{\sin{\left(u \right)}}{\cos{\left(u \right)}} d u}}} = \pi^{2} {\color{red}{\int{\left(- \frac{1}{v}\right)d v}}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ med $$$c=-1$$$ och $$$f{\left(v \right)} = \frac{1}{v}$$$:
$$\pi^{2} {\color{red}{\int{\left(- \frac{1}{v}\right)d v}}} = \pi^{2} {\color{red}{\left(- \int{\frac{1}{v} d v}\right)}}$$
Integralen av $$$\frac{1}{v}$$$ är $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- \pi^{2} {\color{red}{\int{\frac{1}{v} d v}}} = - \pi^{2} {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$
Kom ihåg att $$$v=\cos{\left(u \right)}$$$:
$$- \pi^{2} \ln{\left(\left|{{\color{red}{v}}}\right| \right)} = - \pi^{2} \ln{\left(\left|{{\color{red}{\cos{\left(u \right)}}}}\right| \right)}$$
Kom ihåg att $$$u=18 x$$$:
$$- \pi^{2} \ln{\left(\left|{\cos{\left({\color{red}{u}} \right)}}\right| \right)} = - \pi^{2} \ln{\left(\left|{\cos{\left({\color{red}{\left(18 x\right)}} \right)}}\right| \right)}$$
Alltså,
$$\int{18 \pi^{2} \tan{\left(18 x \right)} d x} = - \pi^{2} \ln{\left(\left|{\cos{\left(18 x \right)}}\right| \right)}$$
Lägg till integrationskonstanten:
$$\int{18 \pi^{2} \tan{\left(18 x \right)} d x} = - \pi^{2} \ln{\left(\left|{\cos{\left(18 x \right)}}\right| \right)}+C$$
Svar
$$$\int 18 \pi^{2} \tan{\left(18 x \right)}\, dx = - \pi^{2} \ln\left(\left|{\cos{\left(18 x \right)}}\right|\right) + C$$$A