Integralen av $$$- \frac{3}{\sqrt{y^{3}}}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$- \frac{3}{\sqrt{y^{3}}}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \left(- \frac{3}{\sqrt{y^{3}}}\right)\, dy$$$.

Lösning

Inmatningen skrivs om: $$$\int{\left(- \frac{3}{\sqrt{y^{3}}}\right)d y}=\int{\left(- \frac{3}{y^{\frac{3}{2}}}\right)d y}$$$.

Tillämpa konstantfaktorregeln $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ med $$$c=-3$$$ och $$$f{\left(y \right)} = \frac{1}{y^{\frac{3}{2}}}$$$:

$${\color{red}{\int{\left(- \frac{3}{y^{\frac{3}{2}}}\right)d y}}} = {\color{red}{\left(- 3 \int{\frac{1}{y^{\frac{3}{2}}} d y}\right)}}$$

Tillämpa potensregeln $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=- \frac{3}{2}$$$:

$$- 3 {\color{red}{\int{\frac{1}{y^{\frac{3}{2}}} d y}}}=- 3 {\color{red}{\int{y^{- \frac{3}{2}} d y}}}=- 3 {\color{red}{\frac{y^{- \frac{3}{2} + 1}}{- \frac{3}{2} + 1}}}=- 3 {\color{red}{\left(- 2 y^{- \frac{1}{2}}\right)}}=- 3 {\color{red}{\left(- \frac{2}{\sqrt{y}}\right)}}$$

Alltså,

$$\int{\left(- \frac{3}{y^{\frac{3}{2}}}\right)d y} = \frac{6}{\sqrt{y}}$$

Lägg till integrationskonstanten:

$$\int{\left(- \frac{3}{y^{\frac{3}{2}}}\right)d y} = \frac{6}{\sqrt{y}}+C$$

Svar

$$$\int \left(- \frac{3}{\sqrt{y^{3}}}\right)\, dy = \frac{6}{\sqrt{y}} + C$$$A


Please try a new game Rotatly