Integralen av $$$\sin^{4}{\left(3 x \right)}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \sin^{4}{\left(3 x \right)}\, dx$$$.
Lösning
Låt $$$u=3 x$$$ vara.
Då $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (stegen kan ses »), och vi har att $$$dx = \frac{du}{3}$$$.
Alltså,
$${\color{red}{\int{\sin^{4}{\left(3 x \right)} d x}}} = {\color{red}{\int{\frac{\sin^{4}{\left(u \right)}}{3} d u}}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=\frac{1}{3}$$$ och $$$f{\left(u \right)} = \sin^{4}{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\sin^{4}{\left(u \right)}}{3} d u}}} = {\color{red}{\left(\frac{\int{\sin^{4}{\left(u \right)} d u}}{3}\right)}}$$
Använd potensreduceringsformeln $$$\sin^{4}{\left(\alpha \right)} = - \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{\cos{\left(4 \alpha \right)}}{8} + \frac{3}{8}$$$ med $$$\alpha= u $$$:
$$\frac{{\color{red}{\int{\sin^{4}{\left(u \right)} d u}}}}{3} = \frac{{\color{red}{\int{\left(- \frac{\cos{\left(2 u \right)}}{2} + \frac{\cos{\left(4 u \right)}}{8} + \frac{3}{8}\right)d u}}}}{3}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=\frac{1}{8}$$$ och $$$f{\left(u \right)} = - 4 \cos{\left(2 u \right)} + \cos{\left(4 u \right)} + 3$$$:
$$\frac{{\color{red}{\int{\left(- \frac{\cos{\left(2 u \right)}}{2} + \frac{\cos{\left(4 u \right)}}{8} + \frac{3}{8}\right)d u}}}}{3} = \frac{{\color{red}{\left(\frac{\int{\left(- 4 \cos{\left(2 u \right)} + \cos{\left(4 u \right)} + 3\right)d u}}{8}\right)}}}{3}$$
Integrera termvis:
$$\frac{{\color{red}{\int{\left(- 4 \cos{\left(2 u \right)} + \cos{\left(4 u \right)} + 3\right)d u}}}}{24} = \frac{{\color{red}{\left(\int{3 d u} - \int{4 \cos{\left(2 u \right)} d u} + \int{\cos{\left(4 u \right)} d u}\right)}}}{24}$$
Tillämpa konstantregeln $$$\int c\, du = c u$$$ med $$$c=3$$$:
$$- \frac{\int{4 \cos{\left(2 u \right)} d u}}{24} + \frac{\int{\cos{\left(4 u \right)} d u}}{24} + \frac{{\color{red}{\int{3 d u}}}}{24} = - \frac{\int{4 \cos{\left(2 u \right)} d u}}{24} + \frac{\int{\cos{\left(4 u \right)} d u}}{24} + \frac{{\color{red}{\left(3 u\right)}}}{24}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=4$$$ och $$$f{\left(u \right)} = \cos{\left(2 u \right)}$$$:
$$\frac{u}{8} + \frac{\int{\cos{\left(4 u \right)} d u}}{24} - \frac{{\color{red}{\int{4 \cos{\left(2 u \right)} d u}}}}{24} = \frac{u}{8} + \frac{\int{\cos{\left(4 u \right)} d u}}{24} - \frac{{\color{red}{\left(4 \int{\cos{\left(2 u \right)} d u}\right)}}}{24}$$
Låt $$$v=2 u$$$ vara.
Då $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (stegen kan ses »), och vi har att $$$du = \frac{dv}{2}$$$.
Alltså,
$$\frac{u}{8} + \frac{\int{\cos{\left(4 u \right)} d u}}{24} - \frac{{\color{red}{\int{\cos{\left(2 u \right)} d u}}}}{6} = \frac{u}{8} + \frac{\int{\cos{\left(4 u \right)} d u}}{24} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{6}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ med $$$c=\frac{1}{2}$$$ och $$$f{\left(v \right)} = \cos{\left(v \right)}$$$:
$$\frac{u}{8} + \frac{\int{\cos{\left(4 u \right)} d u}}{24} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{6} = \frac{u}{8} + \frac{\int{\cos{\left(4 u \right)} d u}}{24} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}}{6}$$
Integralen av cosinus är $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$$\frac{u}{8} + \frac{\int{\cos{\left(4 u \right)} d u}}{24} - \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{12} = \frac{u}{8} + \frac{\int{\cos{\left(4 u \right)} d u}}{24} - \frac{{\color{red}{\sin{\left(v \right)}}}}{12}$$
Kom ihåg att $$$v=2 u$$$:
$$\frac{u}{8} + \frac{\int{\cos{\left(4 u \right)} d u}}{24} - \frac{\sin{\left({\color{red}{v}} \right)}}{12} = \frac{u}{8} + \frac{\int{\cos{\left(4 u \right)} d u}}{24} - \frac{\sin{\left({\color{red}{\left(2 u\right)}} \right)}}{12}$$
Låt $$$v=4 u$$$ vara.
Då $$$dv=\left(4 u\right)^{\prime }du = 4 du$$$ (stegen kan ses »), och vi har att $$$du = \frac{dv}{4}$$$.
Alltså,
$$\frac{u}{8} - \frac{\sin{\left(2 u \right)}}{12} + \frac{{\color{red}{\int{\cos{\left(4 u \right)} d u}}}}{24} = \frac{u}{8} - \frac{\sin{\left(2 u \right)}}{12} + \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{4} d v}}}}{24}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ med $$$c=\frac{1}{4}$$$ och $$$f{\left(v \right)} = \cos{\left(v \right)}$$$:
$$\frac{u}{8} - \frac{\sin{\left(2 u \right)}}{12} + \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{4} d v}}}}{24} = \frac{u}{8} - \frac{\sin{\left(2 u \right)}}{12} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{4}\right)}}}{24}$$
Integralen av cosinus är $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$$\frac{u}{8} - \frac{\sin{\left(2 u \right)}}{12} + \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{96} = \frac{u}{8} - \frac{\sin{\left(2 u \right)}}{12} + \frac{{\color{red}{\sin{\left(v \right)}}}}{96}$$
Kom ihåg att $$$v=4 u$$$:
$$\frac{u}{8} - \frac{\sin{\left(2 u \right)}}{12} + \frac{\sin{\left({\color{red}{v}} \right)}}{96} = \frac{u}{8} - \frac{\sin{\left(2 u \right)}}{12} + \frac{\sin{\left({\color{red}{\left(4 u\right)}} \right)}}{96}$$
Kom ihåg att $$$u=3 x$$$:
$$- \frac{\sin{\left(2 {\color{red}{u}} \right)}}{12} + \frac{\sin{\left(4 {\color{red}{u}} \right)}}{96} + \frac{{\color{red}{u}}}{8} = - \frac{\sin{\left(2 {\color{red}{\left(3 x\right)}} \right)}}{12} + \frac{\sin{\left(4 {\color{red}{\left(3 x\right)}} \right)}}{96} + \frac{{\color{red}{\left(3 x\right)}}}{8}$$
Alltså,
$$\int{\sin^{4}{\left(3 x \right)} d x} = \frac{3 x}{8} - \frac{\sin{\left(6 x \right)}}{12} + \frac{\sin{\left(12 x \right)}}{96}$$
Förenkla:
$$\int{\sin^{4}{\left(3 x \right)} d x} = \frac{36 x - 8 \sin{\left(6 x \right)} + \sin{\left(12 x \right)}}{96}$$
Lägg till integrationskonstanten:
$$\int{\sin^{4}{\left(3 x \right)} d x} = \frac{36 x - 8 \sin{\left(6 x \right)} + \sin{\left(12 x \right)}}{96}+C$$
Svar
$$$\int \sin^{4}{\left(3 x \right)}\, dx = \frac{36 x - 8 \sin{\left(6 x \right)} + \sin{\left(12 x \right)}}{96} + C$$$A