Integralen av $$$\left(\frac{x}{2} - 3\right)^{5}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$\left(\frac{x}{2} - 3\right)^{5}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \left(\frac{x}{2} - 3\right)^{5}\, dx$$$.

Lösning

Låt $$$u=\frac{x}{2} - 3$$$ vara.

$$$du=\left(\frac{x}{2} - 3\right)^{\prime }dx = \frac{dx}{2}$$$ (stegen kan ses »), och vi har att $$$dx = 2 du$$$.

Integralen kan omskrivas som

$${\color{red}{\int{\left(\frac{x}{2} - 3\right)^{5} d x}}} = {\color{red}{\int{2 u^{5} d u}}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=2$$$ och $$$f{\left(u \right)} = u^{5}$$$:

$${\color{red}{\int{2 u^{5} d u}}} = {\color{red}{\left(2 \int{u^{5} d u}\right)}}$$

Tillämpa potensregeln $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=5$$$:

$$2 {\color{red}{\int{u^{5} d u}}}=2 {\color{red}{\frac{u^{1 + 5}}{1 + 5}}}=2 {\color{red}{\left(\frac{u^{6}}{6}\right)}}$$

Kom ihåg att $$$u=\frac{x}{2} - 3$$$:

$$\frac{{\color{red}{u}}^{6}}{3} = \frac{{\color{red}{\left(\frac{x}{2} - 3\right)}}^{6}}{3}$$

Alltså,

$$\int{\left(\frac{x}{2} - 3\right)^{5} d x} = \frac{\left(\frac{x}{2} - 3\right)^{6}}{3}$$

Förenkla:

$$\int{\left(\frac{x}{2} - 3\right)^{5} d x} = \frac{\left(x - 6\right)^{6}}{192}$$

Lägg till integrationskonstanten:

$$\int{\left(\frac{x}{2} - 3\right)^{5} d x} = \frac{\left(x - 6\right)^{6}}{192}+C$$

Svar

$$$\int \left(\frac{x}{2} - 3\right)^{5}\, dx = \frac{\left(x - 6\right)^{6}}{192} + C$$$A


Please try a new game Rotatly