Integralen av $$$2 i \pi d n t \theta$$$ med avseende på $$$t$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int 2 i \pi d n t \theta\, dt$$$.
Lösning
Tillämpa konstantfaktorregeln $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ med $$$c=2 i \pi d n \theta$$$ och $$$f{\left(t \right)} = t$$$:
$${\color{red}{\int{2 i \pi d n t \theta d t}}} = {\color{red}{\left(2 i \pi d n \theta \int{t d t}\right)}}$$
Tillämpa potensregeln $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=1$$$:
$$2 i \pi d n \theta {\color{red}{\int{t d t}}}=2 i \pi d n \theta {\color{red}{\frac{t^{1 + 1}}{1 + 1}}}=2 i \pi d n \theta {\color{red}{\left(\frac{t^{2}}{2}\right)}}$$
Alltså,
$$\int{2 i \pi d n t \theta d t} = i \pi d n t^{2} \theta$$
Lägg till integrationskonstanten:
$$\int{2 i \pi d n t \theta d t} = i \pi d n t^{2} \theta+C$$
Svar
$$$\int 2 i \pi d n t \theta\, dt = i \pi d n t^{2} \theta + C$$$A