Asymptoträknare
Hitta asymptoter steg för steg
Räknaren kommer att försöka hitta funktionens vertikala, horisontella och sneda asymptoter, med steg som visas.
Solution
Your input: find the vertical, horizontal and slant asymptotes of the function $$$f(x)=\frac{x^{2} + 2}{x^{2} - 4}$$$
Vertical Asymptotes
The line $$$x=L$$$ is a vertical asymptote of the function $$$y=\frac{x^{2} + 2}{x^{2} - 4}$$$, if the limit of the function (one-sided) at this point is infinite.
In other words, it means that possible points are points where the denominator equals $$$0$$$ or doesn't exist.
So, find the points where the denominator equals $$$0$$$ and check them.
$$$x=-2$$$, check:
$$$\lim_{x \to -2^+}\left(\frac{x^{2} + 2}{x^{2} - 4}\right)=-\infty$$$ (for steps, see limit calculator).
Since the limit is infinite, then $$$x=-2$$$ is a vertical asymptote.
$$$x=2$$$, check:
$$$\lim_{x \to 2^+}\left(\frac{x^{2} + 2}{x^{2} - 4}\right)=\infty$$$ (for steps, see limit calculator).
Since the limit is infinite, then $$$x=2$$$ is a vertical asymptote.
Horizontal Asymptotes
Line $$$y=L$$$ is a horizontal asymptote of the function $$$y=f{\left(x \right)}$$$, if either $$$\lim_{x \to \infty} f{\left(x \right)}=L$$$ or $$$\lim_{x \to -\infty} f{\left(x \right)}=L$$$, and $$$L$$$ is finite.
Calculate the limits:
$$$\lim_{x \to \infty}\left(\frac{x^{2} + 2}{x^{2} - 4}\right)=1$$$ (for steps, see limit calculator).
$$$\lim_{x \to -\infty}\left(\frac{x^{2} + 2}{x^{2} - 4}\right)=1$$$ (for steps, see limit calculator).
Thus, the horizontal asymptote is $$$y=1$$$.
Slant Asymptotes
Since the degree of the numerator is not one degree greater than the denominator, then there are no slant asymptotes.
Answer
Vertical asymptotes: $$$x=-2$$$; $$$x=2$$$
Horizontal asymptote: $$$y=1$$$
No slant asymptotes.