Kalkylator för uppdelning i partialbråk
Bestäm partialbråksuppdelning steg för steg
Denna webbkalkylator bestämmer partialbråksuppdelningen för en rationell funktion, med stegvis lösning.
Solution
Your input: perform the partial fraction decomposition of $$$\frac{1}{t^{3} - t}$$$
Factor the denominator: $$$\frac{1}{t^{3} - t}=\frac{1}{t \left(t - 1\right) \left(t + 1\right)}$$$
The form of the partial fraction decomposition is
$$\frac{1}{t \left(t - 1\right) \left(t + 1\right)}=\frac{A}{t}+\frac{B}{t + 1}+\frac{C}{t - 1}$$
Write the right-hand side as a single fraction:
$$\frac{1}{t \left(t - 1\right) \left(t + 1\right)}=\frac{t \left(t - 1\right) B + t \left(t + 1\right) C + \left(t - 1\right) \left(t + 1\right) A}{t \left(t - 1\right) \left(t + 1\right)}$$
The denominators are equal, so we require the equality of the numerators:
$$1=t \left(t - 1\right) B + t \left(t + 1\right) C + \left(t - 1\right) \left(t + 1\right) A$$
Expand the right-hand side:
$$1=t^{2} A + t^{2} B + t^{2} C - t B + t C - A$$
Collect up the like terms:
$$1=t^{2} \left(A + B + C\right) + t \left(- B + C\right) - A$$
The coefficients near the like terms should be equal, so the following system is obtained:
$$\begin{cases} A + B + C = 0\\- B + C = 0\\- A = 1 \end{cases}$$
Solving it (for steps, see system of equations calculator), we get that $$$A=-1$$$, $$$B=\frac{1}{2}$$$, $$$C=\frac{1}{2}$$$
Therefore,
$$\frac{1}{t \left(t - 1\right) \left(t + 1\right)}=\frac{-1}{t}+\frac{\frac{1}{2}}{t + 1}+\frac{\frac{1}{2}}{t - 1}$$
Answer: $$$\frac{1}{t^{3} - t}=\frac{-1}{t}+\frac{\frac{1}{2}}{t + 1}+\frac{\frac{1}{2}}{t - 1}$$$