Kalkylator för uppdelning i partialbråk
Bestäm partialbråksuppdelning steg för steg
Denna webbkalkylator bestämmer partialbråksuppdelningen för en rationell funktion, med stegvis lösning.
Solution
Your input: perform the partial fraction decomposition of $$$\frac{1}{4 - 9 x^{2}}$$$
Simplify the expression: $$$\frac{1}{4 - 9 x^{2}}=\frac{-1}{9 x^{2} - 4}$$$
Factor the denominator: $$$\frac{-1}{9 x^{2} - 4}=\frac{-1}{\left(3 x - 2\right) \left(3 x + 2\right)}$$$
The form of the partial fraction decomposition is
$$\frac{-1}{\left(3 x - 2\right) \left(3 x + 2\right)}=\frac{A}{3 x - 2}+\frac{B}{3 x + 2}$$
Write the right-hand side as a single fraction:
$$\frac{-1}{\left(3 x - 2\right) \left(3 x + 2\right)}=\frac{\left(3 x - 2\right) B + \left(3 x + 2\right) A}{\left(3 x - 2\right) \left(3 x + 2\right)}$$
The denominators are equal, so we require the equality of the numerators:
$$-1=\left(3 x - 2\right) B + \left(3 x + 2\right) A$$
Expand the right-hand side:
$$-1=3 x A + 3 x B + 2 A - 2 B$$
Collect up the like terms:
$$-1=x \left(3 A + 3 B\right) + 2 A - 2 B$$
The coefficients near the like terms should be equal, so the following system is obtained:
$$\begin{cases} 3 A + 3 B = 0\\2 A - 2 B = -1 \end{cases}$$
Solving it (for steps, see system of equations calculator), we get that $$$A=- \frac{1}{4}$$$, $$$B=\frac{1}{4}$$$
Therefore,
$$\frac{-1}{\left(3 x - 2\right) \left(3 x + 2\right)}=\frac{- \frac{1}{4}}{3 x - 2}+\frac{\frac{1}{4}}{3 x + 2}$$
Answer: $$$\frac{1}{4 - 9 x^{2}}=\frac{- \frac{1}{4}}{3 x - 2}+\frac{\frac{1}{4}}{3 x + 2}$$$