Kalkylator för komplexa tal

Utför operationer med komplexa tal steg för steg

Kalkylatorn försöker förenkla vilket komplext uttryck som helst och visar stegen. Den utför addition, subtraktion, multiplikation, division och upphöjning till potens samt bestämmer den polära formen, komplexkonjugatet, modulen och inversen för det komplexa talet.

Enter an expression:

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: simplify and calculate different forms of $$$i$$$

The expression is already simplified.

Polar form

For a complex number $$$a+bi$$$, polar form is given by $$$r(\cos(\theta)+i \sin(\theta))$$$, where $$$r=\sqrt{a^2+b^2}$$$ and $$$\theta=\operatorname{atan}\left(\frac{b}{a}\right)$$$

We have that $$$a=0$$$ and $$$b=1$$$

Thus, $$$r=\sqrt{\left(0\right)^2+\left(1\right)^2}=1$$$

Also, $$$\theta=\operatorname{atan}\left(\frac{1}{0}\right)=\frac{\pi}{2}$$$

Therefore, $$$i=\cos{\left(\frac{\pi}{2} \right)} + i \sin{\left(\frac{\pi}{2} \right)}$$$

Inverse

The inverse of $$$i$$$ is $$$\frac{1}{i}$$$

Multiply and divide by $$$i$$$ (keep in mind that $$$i^2=-1$$$):

$$${\color{red}{\left(\frac{1}{i}\right)}}={\color{red}{\left(- i\right)}}$$$

Hence, $$$\frac{1}{i}=- i$$$

Conjugate

The conjugate of $$$a + i b$$$ is $$$a - i b$$$: the conjugate of $$$i$$$ is $$$- i$$$

Modulus

The modulus of $$$a + i b$$$ is $$$\sqrt{a^{2} + b^{2}}$$$: the modulus of $$$i$$$ is $$$1$$$

Answer

$$$i=i=1.0 i$$$

The polar form of $$$i$$$ is $$$\cos{\left(\frac{\pi}{2} \right)} + i \sin{\left(\frac{\pi}{2} \right)}$$$

The inverse of $$$i$$$ is $$$\frac{1}{i}=- i=- 1.0 i$$$

The conjugate of $$$i$$$ is $$$- i=- 1.0 i$$$

The modulus of $$$i$$$ is $$$1$$$


Please try a new game Rotatly