Kalkylator för andragradsekvationer

Lös andragradsekvationer steg för steg

Kalkylatorn löser andragradsekvationen steg för steg antingen genom kvadratkomplettering eller med den kvadratiska formeln. Den hittar både de reella och de imaginära (komplexa) rötterna.

Relaterad kalkylator: Diskriminantkalkylator

Enter a quadratic equation:

For example, x^2+4x+3=0 or x^2+4=5x.

Choose a method:

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: solve the quadratic equation $$$x^{2} - 7 x + 13 = 0$$$ by using quadratic formula.

The standard quadratic equation has the form $$$ax^2+bx+c=0$$$.

In our case, $$$a=1$$$, $$$b=-7$$$, $$$c=13$$$.

Now, find the discriminant using the formula $$$D=b^2-4ac$$$: $$$D=\left(-7\right)^2-4\cdot 1 \cdot 13=-3$$$.

Since the discriminant is negative, there will be two complex roots. This means that the given quadratic equation has no real roots.

Find the roots of the equation using the formulas $$$x_1=\frac{-b-\sqrt{D}}{2a}$$$ and $$$x_2=\frac{-b+\sqrt{D}}{2a}$$$

$$$x_1=\frac{-\left(-7\right)-\sqrt{-3}}{2\cdot 1}=\frac{7}{2} - \frac{\sqrt{3} i}{2}$$$ and $$$x_2=\frac{-\left(-7\right)+\sqrt{-3}}{2\cdot 1}=\frac{7}{2} + \frac{\sqrt{3} i}{2}$$$

Answer: $$$x_1=\frac{7}{2} - \frac{\sqrt{3} i}{2}$$$; $$$x_2=\frac{7}{2} + \frac{\sqrt{3} i}{2}$$$


Please try a new game Rotatly