Kalkylator för multiplikation av polynom
Multiplicera polynom steg för steg
Kalkylatorn multiplicerar två polynom (andragradspolynom, binom, trinom osv.) och visar stegen.
Solution
Your input: multiply $$$2 x^{2} - 4 x + 2$$$ by $$$2 x^{2} - 4 x + 2$$$.
To multiply polynomials, multiply each term of the first polynomial by every term of the second polynomial. Then simplify the products and add them. Finally, simplify further if possible.
So, perform the first step:
$$$\left(\color{BlueViolet}{2 x^{2}}\color{Red}{- 4 x}+\color{Purple}{2}\right) \cdot \left(\color{Crimson}{2 x^{2}}\color{Fuchsia}{- 4 x}+\color{Violet}{2}\right)=$$$
$$$=\left(\color{BlueViolet}{2 x^{2}}\right)\cdot \left(\color{Crimson}{2 x^{2}}\right)+\left(\color{BlueViolet}{2 x^{2}}\right)\cdot \left(\color{Fuchsia}{- 4 x}\right)+\left(\color{BlueViolet}{2 x^{2}}\right)\cdot \left(\color{Violet}{2}\right)+$$$
$$$+\left(\color{Red}{- 4 x}\right)\cdot \left(\color{Crimson}{2 x^{2}}\right)+\left(\color{Red}{- 4 x}\right)\cdot \left(\color{Fuchsia}{- 4 x}\right)+\left(\color{Red}{- 4 x}\right)\cdot \left(\color{Violet}{2}\right)+$$$
$$$+\left(\color{Purple}{2}\right)\cdot \left(\color{Crimson}{2 x^{2}}\right)+\left(\color{Purple}{2}\right)\cdot \left(\color{Fuchsia}{- 4 x}\right)+\left(\color{Purple}{2}\right)\cdot \left(\color{Violet}{2}\right)=$$$
Simplify the products:
$$$=4 x^{4}- 8 x^{3}+4 x^{2}+$$$
$$$- 8 x^{3}+16 x^{2}- 8 x+$$$
$$$+4 x^{2}- 8 x+4=$$$
Simplify further:
$$$=4 x^{4} - 16 x^{3} + 24 x^{2} - 16 x + 4$$$
Answer: $$$\left(2 x^{2} - 4 x + 2\right)\cdot \left(2 x^{2} - 4 x + 2\right)=4 x^{4} - 16 x^{3} + 24 x^{2} - 16 x + 4$$$.