Decomposição em fatores primos de $$$4689$$$
Sua entrada
Encontre a decomposição em fatores primos de $$$4689$$$.
Solução
Comece com o número $$$2$$$.
Determine se $$$4689$$$ é divisível por $$$2$$$.
Como não é divisível, passe para o próximo número primo.
O próximo número primo é $$$3$$$.
Determine se $$$4689$$$ é divisível por $$$3$$$.
É divisível; portanto, divida $$$4689$$$ por $$${\color{green}3}$$$: $$$\frac{4689}{3} = {\color{red}1563}$$$.
Determine se $$$1563$$$ é divisível por $$$3$$$.
É divisível; portanto, divida $$$1563$$$ por $$${\color{green}3}$$$: $$$\frac{1563}{3} = {\color{red}521}$$$.
O número primo $$${\color{green}521}$$$ não tem outros divisores senão $$$1$$$ e $$${\color{green}521}$$$: $$$\frac{521}{521} = {\color{red}1}$$$.
Como obtivemos $$$1$$$, terminamos.
Agora, basta contar o número de ocorrências dos divisores (números verdes) e escrever a fatoração em primos: $$$4689 = 3^{2} \cdot 521$$$.
Resposta
A decomposição em fatores primos é $$$4689 = 3^{2} \cdot 521$$$A.