Calculadora de Fração para Decimal
Converta frações em decimais passo a passo
A calculadora converterá a fração dada (própria ou imprópria) ou o número misto em decimal (possivelmente, periódico ou recorrente), com os passos mostrados.
Solution
Your input: convert $$$\frac{300}{24}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccc}\phantom{1}&\phantom{2}&\phantom{.}&\phantom{5}\end{array}&\\24&\phantom{-}\enclose{longdiv}{\begin{array}{ccc}3&0&0\end{array}}&\\&\begin{array}{lll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$24$$$'s are in $$$3$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$3-24 \cdot 0 = 3 - 0= 3$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}\color{Red}{0}&\phantom{1}&\phantom{2}&\phantom{.}&\phantom{5}\end{array}&\\\color{Magenta}{24}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}\color{Red}{3}& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$24$$$'s are in $$$30$$$?
The answer is $$$1$$$.
Write down $$$1$$$ in the upper part of the table.
Now, $$$30-24 \cdot 1 = 30 - 24= 6$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}0&\color{DarkBlue}{1}&\phantom{2}&\phantom{.}&\phantom{5}\end{array}&\\\color{Magenta}{24}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}3&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{DarkBlue}{3}&\color{DarkBlue}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}2&4&\phantom{.}\\\hline\phantom{lll}&6&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$24$$$'s are in $$$60$$$?
The answer is $$$2$$$.
Write down $$$2$$$ in the upper part of the table.
Now, $$$60-24 \cdot 2 = 60 - 48= 12$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}0&1&\color{OrangeRed}{2}&\phantom{.}&\phantom{5}\end{array}&\\\color{Magenta}{24}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}3&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}2&4&\phantom{.}\\\hline\phantom{lll}&\color{OrangeRed}{6}&\color{OrangeRed}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&4&8&\phantom{.}\\\hline\phantom{lll}&1&2&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$24$$$'s are in $$$120$$$?
The answer is $$$5$$$.
Write down $$$5$$$ in the upper part of the table.
Now, $$$120-24 \cdot 5 = 120 - 120= 0$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}0&1&2&.&\color{Fuchsia}{5}\end{array}&\\\color{Magenta}{24}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}3&0&0&.&0\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}3&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}2&4&\phantom{.}\\\hline\phantom{lll}&6&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&4&8&\phantom{.}\\\hline\phantom{lll}&\color{Fuchsia}{1}&\color{Fuchsia}{2}&\phantom{.}&\color{Fuchsia}{0}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&1&2&\phantom{.}&0\\\hline\phantom{lll}&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{300}{24}=12.5 \overline{}$$$
Answer: $$$\frac{300}{24}=12.5\overline{}$$$