Calculadora de Método Simplex

Resolver problemas de otimização usando o método simplex

A calculadora resolverá o problema de otimização fornecido usando o algoritmo simplex. Ele adicionará folga, excedente e variáveis artificiais, se necessário. No caso de variáveis artificiais, o método Big M ou o método de duas fases é usado para determinar a solução inicial. As etapas estão disponíveis.

Separados por vírgula.

Se a calculadora não calculou algo ou você identificou um erro, ou tem uma sugestão/comentário, escreva nos comentários abaixo.

Sua entrada

Maximize $$$Z = 3 x_{1} + 4 x_{2}$$$, sujeito a $$$\begin{cases} x_{1} + 2 x_{2} \leq 8 \\ x_{1} + x_{2} \leq 6 \\ x_{1} \geq 0 \\ x_{2} \geq 0 \end{cases}$$$.

Solução

O problema na forma canônica pode ser escrito da seguinte forma:

$$Z = 3 x_{1} + 4 x_{2} \to max$$$$\begin{cases} x_{1} + 2 x_{2} \leq 8 \\ x_{1} + x_{2} \leq 6 \\ x_{1}, x_{2} \geq 0 \end{cases}$$

Adicione variáveis (folga ou excedente) para transformar todas as desigualdades em igualdades:

$$Z = 3 x_{1} + 4 x_{2} \to max$$$$\begin{cases} x_{1} + 2 x_{2} + S_{1} = 8 \\ x_{1} + x_{2} + S_{2} = 6 \\ x_{1}, x_{2}, S_{1}, S_{2} \geq 0 \end{cases}$$

Escreva o quadro simplex:

Basic$$$x_{1}$$$$$$x_{2}$$$$$$S_{1}$$$$$$S_{2}$$$Solução
$$$Z$$$$$$-3$$$$$$-4$$$$$$0$$$$$$0$$$$$$0$$$
$$$S_{1}$$$$$$1$$$$$$2$$$$$$1$$$$$$0$$$$$$8$$$
$$$S_{2}$$$$$$1$$$$$$1$$$$$$0$$$$$$1$$$$$$6$$$

A variável de entrada é $$$x_{2}$$$, porque tem o coeficiente mais negativo $$$-4$$$ na linha Z.

Basic$$$x_{1}$$$$$$x_{2}$$$$$$S_{1}$$$$$$S_{2}$$$SoluçãoRatio
$$$Z$$$$$$-3$$$$$$-4$$$$$$0$$$$$$0$$$$$$0$$$
$$$S_{1}$$$$$$1$$$$$$2$$$$$$1$$$$$$0$$$$$$8$$$$$$\frac{8}{2} = 4$$$
$$$S_{2}$$$$$$1$$$$$$1$$$$$$0$$$$$$1$$$$$$6$$$$$$\frac{6}{1} = 6$$$

A variável que sai é $$$S_{1}$$$, porque tem a menor proporção.

Divida a linha $$$1$$$ por $$$2$$$: $$$R_{1} = \frac{R_{1}}{2}$$$.

Basic$$$x_{1}$$$$$$x_{2}$$$$$$S_{1}$$$$$$S_{2}$$$Solução
$$$Z$$$$$$-3$$$$$$-4$$$$$$0$$$$$$0$$$$$$0$$$
$$$x_{2}$$$$$$\frac{1}{2}$$$$$$1$$$$$$\frac{1}{2}$$$$$$0$$$$$$4$$$
$$$S_{2}$$$$$$1$$$$$$1$$$$$$0$$$$$$1$$$$$$6$$$

Adicione a linha $$$2$$$ multiplicada por $$$4$$$ à linha $$$1$$$: $$$R_{1} = R_{1} + 4 R_{2}$$$.

Basic$$$x_{1}$$$$$$x_{2}$$$$$$S_{1}$$$$$$S_{2}$$$Solução
$$$Z$$$$$$-1$$$$$$0$$$$$$2$$$$$$0$$$$$$16$$$
$$$x_{2}$$$$$$\frac{1}{2}$$$$$$1$$$$$$\frac{1}{2}$$$$$$0$$$$$$4$$$
$$$S_{2}$$$$$$1$$$$$$1$$$$$$0$$$$$$1$$$$$$6$$$

Subtraia a linha $$$2$$$ da linha $$$3$$$: $$$R_{3} = R_{3} - R_{2}$$$.

Basic$$$x_{1}$$$$$$x_{2}$$$$$$S_{1}$$$$$$S_{2}$$$Solução
$$$Z$$$$$$-1$$$$$$0$$$$$$2$$$$$$0$$$$$$16$$$
$$$x_{2}$$$$$$\frac{1}{2}$$$$$$1$$$$$$\frac{1}{2}$$$$$$0$$$$$$4$$$
$$$S_{2}$$$$$$\frac{1}{2}$$$$$$0$$$$$$- \frac{1}{2}$$$$$$1$$$$$$2$$$

A variável de entrada é $$$x_{1}$$$, porque tem o coeficiente mais negativo $$$-1$$$ na linha Z.

Basic$$$x_{1}$$$$$$x_{2}$$$$$$S_{1}$$$$$$S_{2}$$$SoluçãoRatio
$$$Z$$$$$$-1$$$$$$0$$$$$$2$$$$$$0$$$$$$16$$$
$$$x_{2}$$$$$$\frac{1}{2}$$$$$$1$$$$$$\frac{1}{2}$$$$$$0$$$$$$4$$$$$$\frac{4}{\frac{1}{2}} = 8$$$
$$$S_{2}$$$$$$\frac{1}{2}$$$$$$0$$$$$$- \frac{1}{2}$$$$$$1$$$$$$2$$$$$$\frac{2}{\frac{1}{2}} = 4$$$

A variável que sai é $$$S_{2}$$$, porque tem a menor proporção.

Multiplique a linha $$$2$$$ por $$$2$$$: $$$R_{2} = 2 R_{2}$$$.

Basic$$$x_{1}$$$$$$x_{2}$$$$$$S_{1}$$$$$$S_{2}$$$Solução
$$$Z$$$$$$-1$$$$$$0$$$$$$2$$$$$$0$$$$$$16$$$
$$$x_{2}$$$$$$\frac{1}{2}$$$$$$1$$$$$$\frac{1}{2}$$$$$$0$$$$$$4$$$
$$$x_{1}$$$$$$1$$$$$$0$$$$$$-1$$$$$$2$$$$$$4$$$

Adicione a linha $$$3$$$ à linha $$$1$$$: $$$R_{1} = R_{1} + R_{3}$$$.

Basic$$$x_{1}$$$$$$x_{2}$$$$$$S_{1}$$$$$$S_{2}$$$Solução
$$$Z$$$$$$0$$$$$$0$$$$$$1$$$$$$2$$$$$$20$$$
$$$x_{2}$$$$$$\frac{1}{2}$$$$$$1$$$$$$\frac{1}{2}$$$$$$0$$$$$$4$$$
$$$x_{1}$$$$$$1$$$$$$0$$$$$$-1$$$$$$2$$$$$$4$$$

Subtraia a linha $$$3$$$ multiplicada por $$$\frac{1}{2}$$$ da linha $$$2$$$: $$$R_{2} = R_{2} - \frac{R_{3}}{2}$$$.

Basic$$$x_{1}$$$$$$x_{2}$$$$$$S_{1}$$$$$$S_{2}$$$Solução
$$$Z$$$$$$0$$$$$$0$$$$$$1$$$$$$2$$$$$$20$$$
$$$x_{2}$$$$$$0$$$$$$1$$$$$$1$$$$$$-1$$$$$$2$$$
$$$x_{1}$$$$$$1$$$$$$0$$$$$$-1$$$$$$2$$$$$$4$$$

Nenhum dos coeficientes da linha Z é negativo.

O ótimo é alcançado.

A seguinte solução é obtida: $$$\left(x_{1}, x_{2}, S_{1}, S_{2}\right) = \left(4, 2, 0, 0\right)$$$.

Responder

$$$Z = 20$$$A é alcançado em $$$\left(x_{1}, x_{2}\right) = \left(4, 2\right)$$$A.