Calculadora de Derivada Parcial

Calcular derivadas parciais passo a passo

Esta calculadora online calculará a derivada parcial da função, com as etapas mostradas. Você pode especificar qualquer ordem de integração.

Enter a function:

Enter the order of integration:

Hint: type x^2,y to calculate `(partial^3 f)/(partial x^2 partial y)`, or enter x,y^2,x to find `(partial^4 f)/(partial x partial y^2 partial x)`.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Solution

Your input: find $$$\frac{\partial}{\partial y}\left(2 x^{2} y - 2 x^{2} + y^{3} - 2 y^{2} + 2\right)$$$

The derivative of a sum/difference is the sum/difference of derivatives:

$${\color{red}{\frac{\partial}{\partial y}\left(2 x^{2} y - 2 x^{2} + y^{3} - 2 y^{2} + 2\right)}}={\color{red}{\left(\frac{\partial}{\partial y}\left(2\right) - \frac{\partial}{\partial y}\left(2 x^{2}\right) - \frac{\partial}{\partial y}\left(2 y^{2}\right) + \frac{\partial}{\partial y}\left(y^{3}\right) + \frac{\partial}{\partial y}\left(2 x^{2} y\right)\right)}}$$

Apply the constant multiple rule $$$\frac{\partial}{\partial y} \left(c \cdot f \right)=c \cdot \frac{\partial}{\partial y} \left(f \right)$$$ with $$$c=2 x^{2}$$$ and $$$f=y$$$:

$${\color{red}{\frac{\partial}{\partial y}\left(2 x^{2} y\right)}} + \frac{\partial}{\partial y}\left(2\right) - \frac{\partial}{\partial y}\left(2 x^{2}\right) - \frac{\partial}{\partial y}\left(2 y^{2}\right) + \frac{\partial}{\partial y}\left(y^{3}\right)={\color{red}{2 x^{2} \frac{\partial}{\partial y}\left(y\right)}} + \frac{\partial}{\partial y}\left(2\right) - \frac{\partial}{\partial y}\left(2 x^{2}\right) - \frac{\partial}{\partial y}\left(2 y^{2}\right) + \frac{\partial}{\partial y}\left(y^{3}\right)$$

Apply the power rule $$$\frac{\partial}{\partial y} \left(y^{n} \right)=n\cdot y^{-1+n}$$$ with $$$n=1$$$, in other words $$$\frac{\partial}{\partial y} \left(y \right)=1$$$:

$$2 x^{2} {\color{red}{\frac{\partial}{\partial y}\left(y\right)}} + \frac{\partial}{\partial y}\left(2\right) - \frac{\partial}{\partial y}\left(2 x^{2}\right) - \frac{\partial}{\partial y}\left(2 y^{2}\right) + \frac{\partial}{\partial y}\left(y^{3}\right)=2 x^{2} {\color{red}{1}} + \frac{\partial}{\partial y}\left(2\right) - \frac{\partial}{\partial y}\left(2 x^{2}\right) - \frac{\partial}{\partial y}\left(2 y^{2}\right) + \frac{\partial}{\partial y}\left(y^{3}\right)$$

The derivative of a constant is 0:

$$2 x^{2} - {\color{red}{\frac{\partial}{\partial y}\left(2 x^{2}\right)}} + \frac{\partial}{\partial y}\left(2\right) - \frac{\partial}{\partial y}\left(2 y^{2}\right) + \frac{\partial}{\partial y}\left(y^{3}\right)=2 x^{2} - {\color{red}{\left(0\right)}} + \frac{\partial}{\partial y}\left(2\right) - \frac{\partial}{\partial y}\left(2 y^{2}\right) + \frac{\partial}{\partial y}\left(y^{3}\right)$$

Apply the constant multiple rule $$$\frac{\partial}{\partial y} \left(c \cdot f \right)=c \cdot \frac{\partial}{\partial y} \left(f \right)$$$ with $$$c=2$$$ and $$$f=y^{2}$$$:

$$2 x^{2} - {\color{red}{\frac{\partial}{\partial y}\left(2 y^{2}\right)}} + \frac{\partial}{\partial y}\left(2\right) + \frac{\partial}{\partial y}\left(y^{3}\right)=2 x^{2} - {\color{red}{\left(2 \frac{\partial}{\partial y}\left(y^{2}\right)\right)}} + \frac{\partial}{\partial y}\left(2\right) + \frac{\partial}{\partial y}\left(y^{3}\right)$$

Apply the power rule $$$\frac{\partial}{\partial y} \left(y^{n} \right)=n\cdot y^{-1+n}$$$ with $$$n=2$$$:

$$2 x^{2} - 2 {\color{red}{\frac{\partial}{\partial y}\left(y^{2}\right)}} + \frac{\partial}{\partial y}\left(2\right) + \frac{\partial}{\partial y}\left(y^{3}\right)=2 x^{2} - 2 {\color{red}{\left(2 y^{-1 + 2}\right)}} + \frac{\partial}{\partial y}\left(2\right) + \frac{\partial}{\partial y}\left(y^{3}\right)=2 x^{2} - 4 y + \frac{\partial}{\partial y}\left(2\right) + \frac{\partial}{\partial y}\left(y^{3}\right)$$

The derivative of a constant is 0:

$$2 x^{2} - 4 y + {\color{red}{\frac{\partial}{\partial y}\left(2\right)}} + \frac{\partial}{\partial y}\left(y^{3}\right)=2 x^{2} - 4 y + {\color{red}{\left(0\right)}} + \frac{\partial}{\partial y}\left(y^{3}\right)$$

Apply the power rule $$$\frac{\partial}{\partial y} \left(y^{n} \right)=n\cdot y^{-1+n}$$$ with $$$n=3$$$:

$$2 x^{2} - 4 y + {\color{red}{\frac{\partial}{\partial y}\left(y^{3}\right)}}=2 x^{2} - 4 y + {\color{red}{\left(3 y^{-1 + 3}\right)}}=2 x^{2} + 3 y^{2} - 4 y$$

Thus, $$$\frac{\partial}{\partial y}\left(2 x^{2} y - 2 x^{2} + y^{3} - 2 y^{2} + 2\right)=2 x^{2} + 3 y^{2} - 4 y$$$

Answer: $$$\frac{\partial}{\partial y}\left(2 x^{2} y - 2 x^{2} + y^{3} - 2 y^{2} + 2\right)=2 x^{2} + 3 y^{2} - 4 y$$$