Calculadora de Derivadas Parciais

Calcular derivadas parciais passo a passo

Esta calculadora online calcula a derivada parcial da função, com os passos exibidos. Você pode especificar qualquer ordem de diferenciação.

Enter a function:

Enter the order of integration:

Hint: type x^2,y to calculate `(partial^3 f)/(partial x^2 partial y)`, or enter x,y^2,x to find `(partial^4 f)/(partial x partial y^2 partial x)`.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: find $$$\frac{\partial}{\partial x}\left(\left(x - y\right) \left(- x y + 1\right)\right)$$$

First, rewrite the function: $$$\frac{\partial}{\partial x}\left(\left(x - y\right) \left(- x y + 1\right)\right)=\frac{\partial}{\partial x}\left(\left(- x + y\right) \left(x y - 1\right)\right)$$$

Expand the function: $$$\frac{\partial}{\partial x}\left(\left(- x + y\right) \left(x y - 1\right)\right)=\frac{\partial}{\partial x}\left(- x^{2} y + x y^{2} + x - y\right)$$$

The derivative of a sum/difference is the sum/difference of derivatives:

$${\color{red}{\frac{\partial}{\partial x}\left(- x^{2} y + x y^{2} + x - y\right)}}={\color{red}{\left(\frac{\partial}{\partial x}\left(x\right) - \frac{\partial}{\partial x}\left(y\right) + \frac{\partial}{\partial x}\left(x y^{2}\right) - \frac{\partial}{\partial x}\left(x^{2} y\right)\right)}}$$

Apply the constant multiple rule $$$\frac{\partial}{\partial x} \left(c \cdot f \right)=c \cdot \frac{\partial}{\partial x} \left(f \right)$$$ with $$$c=y^{2}$$$ and $$$f=x$$$:

$${\color{red}{\frac{\partial}{\partial x}\left(x y^{2}\right)}} + \frac{\partial}{\partial x}\left(x\right) - \frac{\partial}{\partial x}\left(y\right) - \frac{\partial}{\partial x}\left(x^{2} y\right)={\color{red}{y^{2} \frac{\partial}{\partial x}\left(x\right)}} + \frac{\partial}{\partial x}\left(x\right) - \frac{\partial}{\partial x}\left(y\right) - \frac{\partial}{\partial x}\left(x^{2} y\right)$$

Apply the power rule $$$\frac{\partial}{\partial x} \left(x^{n} \right)=n\cdot x^{-1+n}$$$ with $$$n=1$$$, in other words $$$\frac{\partial}{\partial x} \left(x \right)=1$$$:

$$y^{2} {\color{red}{\frac{\partial}{\partial x}\left(x\right)}} + {\color{red}{\frac{\partial}{\partial x}\left(x\right)}} - \frac{\partial}{\partial x}\left(y\right) - \frac{\partial}{\partial x}\left(x^{2} y\right)=y^{2} {\color{red}{1}} + {\color{red}{1}} - \frac{\partial}{\partial x}\left(y\right) - \frac{\partial}{\partial x}\left(x^{2} y\right)$$

The derivative of a constant is 0:

$$y^{2} + 1 - {\color{red}{\frac{\partial}{\partial x}\left(y\right)}} - \frac{\partial}{\partial x}\left(x^{2} y\right)=y^{2} + 1 - {\color{red}{\left(0\right)}} - \frac{\partial}{\partial x}\left(x^{2} y\right)$$

Apply the constant multiple rule $$$\frac{\partial}{\partial x} \left(c \cdot f \right)=c \cdot \frac{\partial}{\partial x} \left(f \right)$$$ with $$$c=y$$$ and $$$f=x^{2}$$$:

$$y^{2} + 1 - {\color{red}{\frac{\partial}{\partial x}\left(x^{2} y\right)}}=y^{2} + 1 - {\color{red}{y \frac{\partial}{\partial x}\left(x^{2}\right)}}$$

Apply the power rule $$$\frac{\partial}{\partial x} \left(x^{n} \right)=n\cdot x^{-1+n}$$$ with $$$n=2$$$:

$$y^{2} - y {\color{red}{\frac{\partial}{\partial x}\left(x^{2}\right)}} + 1=y^{2} - y {\color{red}{\left(2 x^{-1 + 2}\right)}} + 1=- 2 x y + y^{2} + 1$$

Thus, $$$\frac{\partial}{\partial x}\left(- x^{2} y + x y^{2} + x - y\right)=- 2 x y + y^{2} + 1$$$

Answer: $$$\frac{\partial}{\partial x}\left(\left(x - y\right) \left(- x y + 1\right)\right)=- 2 x y + y^{2} + 1$$$


Please try a new game Rotatly