Calculadora de Equação Quadrática
Resolva equações quadráticas passo a passo
A calculadora resolverá a equação quadrática passo a passo, seja completando o quadrado ou usando a fórmula quadrática. Ela encontrará tanto as raízes reais quanto as imaginárias (complexas).
Calculadora relacionada: Calculadora do Discriminante
Solution
Your input: solve the quadratic equation $$$x^{2} - 7 x + 13 = 0$$$ by using quadratic formula.
The standard quadratic equation has the form $$$ax^2+bx+c=0$$$.
In our case, $$$a=1$$$, $$$b=-7$$$, $$$c=13$$$.
Now, find the discriminant using the formula $$$D=b^2-4ac$$$: $$$D=\left(-7\right)^2-4\cdot 1 \cdot 13=-3$$$.
Since the discriminant is negative, there will be two complex roots. This means that the given quadratic equation has no real roots.
Find the roots of the equation using the formulas $$$x_1=\frac{-b-\sqrt{D}}{2a}$$$ and $$$x_2=\frac{-b+\sqrt{D}}{2a}$$$
$$$x_1=\frac{-\left(-7\right)-\sqrt{-3}}{2\cdot 1}=\frac{7}{2} - \frac{\sqrt{3} i}{2}$$$ and $$$x_2=\frac{-\left(-7\right)+\sqrt{-3}}{2\cdot 1}=\frac{7}{2} + \frac{\sqrt{3} i}{2}$$$
Answer: $$$x_1=\frac{7}{2} - \frac{\sqrt{3} i}{2}$$$; $$$x_2=\frac{7}{2} + \frac{\sqrt{3} i}{2}$$$