Completando a Calculadora Quadrada
Quadrados completos passo a passo
A calculadora tentará completar o quadrado para a expressão quadrática dada, elipse, hipérbole ou qualquer expressão polinomial, com as etapas mostradas.
Solution
Your input: complete the square in $$$x^{2} - 4 x + 5 y^{2} + 10 y + 14$$$.
Add and subtract $$$5$$$:
$$$x^{2} - 4 x + 5 y^{2} + 10 y + 14=x^{2} - 4 x + 5 y^{2} + 10 y + 14 + {\color{red}{\left(5\right)}} - {\color{red}{\left(5\right)}}$$$
Factor $$$5$$$:
$$$x^{2} - 4 x + 9 + {\color{red}{\left(5 y^{2} + 10 y + 5\right)}}=x^{2} - 4 x + 9 + {\color{red}{\left(5 \left(y^{2} + 2 y + 1\right)\right)}}$$$
Complete the square:
$$$x^{2} - 4 x + 9 + 5 {\color{red}{\left(y^{2} + 2 y + 1\right)}}=x^{2} - 4 x + 9 + 5 {\color{red}{\left(y + 1\right)^{2}}}$$$
Add and subtract $$$4$$$:
$$$x^{2} - 4 x + 5 \left(y + 1\right)^{2} + 9=x^{2} - 4 x + 5 \left(y + 1\right)^{2} + 9 + {\color{red}{\left(4\right)}} - {\color{red}{\left(4\right)}}$$$
Complete the square:
$$$5 \left(y + 1\right)^{2} + 5 + {\color{red}{\left(x^{2} - 4 x + 4\right)}}=5 \left(y + 1\right)^{2} + 5 + {\color{red}{\left(x - 2\right)^{2}}}$$$
Answer: $$$x^{2} - 4 x + 5 y^{2} + 10 y + 14=\left(x - 2\right)^{2} + 5 \left(y + 1\right)^{2} + 5$$$.