Grootte van $$$\left\langle 1, 2 t, 3 t^{2}\right\rangle$$$

De rekenmachine berekent de grootte (lengte, norm) van de vector $$$\left\langle 1, 2 t, 3 t^{2}\right\rangle$$$, met uitgewerkte stappen.
$$$\langle$$$ $$$\rangle$$$
Door komma's gescheiden.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal de grootte (lengte) van $$$\mathbf{\vec{u}} = \left\langle 1, 2 t, 3 t^{2}\right\rangle$$$.

Oplossing

De grootte van een vector wordt gegeven door de formule $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$.

De som van de kwadraten van de absolute waarden van de coördinaten is $$$\left|{1}\right|^{2} + \left|{2 t}\right|^{2} + \left|{3 t^{2}}\right|^{2} = 9 t^{4} + 4 t^{2} + 1$$$.

Daarom is de norm van de vector $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{9 t^{4} + 4 t^{2} + 1}$$$.

Antwoord

De grootte is $$$\sqrt{9 t^{4} + 4 t^{2} + 1} = \left(9 t^{4} + 4 t^{2} + 1\right)^{0.5}$$$A.


Please try a new game Rotatly