Determinant van $$$\left[\begin{array}{cc}\cos{\left(\theta \right)} & - r \sin{\left(\theta \right)}\\\sin{\left(\theta \right)} & r \cos{\left(\theta \right)}\end{array}\right]$$$
Gerelateerde rekenmachine: Rekenmachine voor cofactormatrix
Uw invoer
Bereken $$$\left|\begin{array}{cc}\cos{\left(\theta \right)} & - r \sin{\left(\theta \right)}\\\sin{\left(\theta \right)} & r \cos{\left(\theta \right)}\end{array}\right|$$$.
Oplossing
De determinant van een 2x2-matrix is $$$\left|\begin{array}{cc}a & b\\c & d\end{array}\right| = a d - b c$$$.
$$$\left|\begin{array}{cc}\cos{\left(\theta \right)} & - r \sin{\left(\theta \right)}\\\sin{\left(\theta \right)} & r \cos{\left(\theta \right)}\end{array}\right| = \left(\cos{\left(\theta \right)}\right)\cdot \left(r \cos{\left(\theta \right)}\right) - \left(- r \sin{\left(\theta \right)}\right)\cdot \left(\sin{\left(\theta \right)}\right) = r$$$
Antwoord
$$$\left|\begin{array}{cc}\cos{\left(\theta \right)} & - r \sin{\left(\theta \right)}\\\sin{\left(\theta \right)} & r \cos{\left(\theta \right)}\end{array}\right| = r$$$A