Vereenvoudig $$$\left(\overline{A} \cdot \overline{B}\right) + \left(\overline{A} \cdot B \cdot \overline{C}\right) + \overline{A + \overline{C}}$$$

De rekenmachine zal de Booleaanse uitdrukking $$$\left(\overline{A} \cdot \overline{B}\right) + \left(\overline{A} \cdot B \cdot \overline{C}\right) + \overline{A + \overline{C}}$$$ vereenvoudigen, waarbij de stappen worden getoond.

Gerelateerde rekenmachine: Waarheidstabel-rekenmachine

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Vereenvoudig de Booleaanse uitdrukking $$$\left(\overline{A} \cdot \overline{B}\right) + \left(\overline{A} \cdot B \cdot \overline{C}\right) + \overline{A + \overline{C}}.$$$

Oplossing

Pas de stelling van De Morgan $$$\overline{x + y} = \overline{x} \cdot \overline{y}$$$ toe met $$$x = A$$$ en $$$y = \overline{C}$$$:

$$\left(\overline{A} \cdot \overline{B}\right) + \left(\overline{A} \cdot B \cdot \overline{C}\right) + {\color{red}\left(\overline{A + \overline{C}}\right)} = \left(\overline{A} \cdot \overline{B}\right) + \left(\overline{A} \cdot B \cdot \overline{C}\right) + {\color{red}\left(\overline{A} \cdot \overline{\overline{C}}\right)}$$

Pas de wet van de dubbele negatie (involutie) $$$\overline{\overline{x}} = x$$$ toe op $$$x = C$$$:

$$\left(\overline{A} \cdot \overline{B}\right) + \left(\overline{A} \cdot B \cdot \overline{C}\right) + \left(\overline{A} \cdot {\color{red}\left(\overline{\overline{C}}\right)}\right) = \left(\overline{A} \cdot \overline{B}\right) + \left(\overline{A} \cdot B \cdot \overline{C}\right) + \left(\overline{A} \cdot {\color{red}\left(C\right)}\right)$$

Herschrijf:

$${\color{red}\left(\left(\overline{A} \cdot \overline{B}\right) + \left(\overline{A} \cdot B \cdot \overline{C}\right)\right)} + \left(\overline{A} \cdot C\right) = {\color{red}\left(\left(\left(B \cdot \overline{C}\right) + \overline{B}\right) \cdot \overline{A}\right)} + \left(\overline{A} \cdot C\right)$$

Pas de commutatieve wet toe:

$$\left({\color{red}\left(\left(B \cdot \overline{C}\right) + \overline{B}\right)} \cdot \overline{A}\right) + \left(\overline{A} \cdot C\right) = \left({\color{red}\left(\overline{B} + \left(B \cdot \overline{C}\right)\right)} \cdot \overline{A}\right) + \left(\overline{A} \cdot C\right)$$

Pas de redundantiewet $$$x + \left(\overline{x} \cdot y\right) = x + y$$$ toe met $$$x = \overline{B}$$$ en $$$y = \overline{C}$$$:

$$\left({\color{red}\left(\overline{B} + \left(B \cdot \overline{C}\right)\right)} \cdot \overline{A}\right) + \left(\overline{A} \cdot C\right) = \left({\color{red}\left(\overline{B} + \overline{C}\right)} \cdot \overline{A}\right) + \left(\overline{A} \cdot C\right)$$

Herschrijf:

$${\color{red}\left(\left(\left(\overline{B} + \overline{C}\right) \cdot \overline{A}\right) + \left(\overline{A} \cdot C\right)\right)} = {\color{red}\left(\left(C + \overline{B} + \overline{C}\right) \cdot \overline{A}\right)}$$

Pas de commutatieve wet toe:

$${\color{red}\left(C + \overline{B} + \overline{C}\right)} \cdot \overline{A} = {\color{red}\left(C + \overline{C} + \overline{B}\right)} \cdot \overline{A}$$

Pas de complementregel $$$x + \overline{x} = 1$$$ toe met $$$x = C$$$:

$$\left({\color{red}\left(C + \overline{C}\right)} + \overline{B}\right) \cdot \overline{A} = \left({\color{red}\left(1\right)} + \overline{B}\right) \cdot \overline{A}$$

Pas de commutatieve wet toe:

$${\color{red}\left(1 + \overline{B}\right)} \cdot \overline{A} = {\color{red}\left(\overline{B} + 1\right)} \cdot \overline{A}$$

Pas de dominantiewet (nulwet, annuleringswet) $$$x + 1 = 1$$$ toe met $$$x = \overline{B}$$$:

$${\color{red}\left(\overline{B} + 1\right)} \cdot \overline{A} = {\color{red}\left(1\right)} \cdot \overline{A}$$

Pas de commutatieve wet toe:

$${\color{red}\left(1 \cdot \overline{A}\right)} = {\color{red}\left(\overline{A} \cdot 1\right)}$$

Pas de identiteitswet $$$x \cdot 1 = x$$$ toe met $$$x = \overline{A}$$$:

$${\color{red}\left(\overline{A} \cdot 1\right)} = {\color{red}\left(\overline{A}\right)}$$

Antwoord

$$$\left(\overline{A} \cdot \overline{B}\right) + \left(\overline{A} \cdot B \cdot \overline{C}\right) + \overline{A + \overline{C}} = \overline{A}$$$


Please try a new game Rotatly