$$$\left(\overline{A} \cdot \overline{B}\right) + \left(\overline{A} \cdot B \cdot \overline{C}\right) + \overline{A + \overline{C}}$$$ を簡単化する
関連する計算機: 真理値表計算機
入力内容
ブール式 $$$\left(\overline{A} \cdot \overline{B}\right) + \left(\overline{A} \cdot B \cdot \overline{C}\right) + \overline{A + \overline{C}}$$$ を簡単化してください。
解答
$$$x = A$$$ と $$$y = \overline{C}$$$ に対してド・モルガンの法則 $$$\overline{x + y} = \overline{x} \cdot \overline{y}$$$ を適用する:
$$\left(\overline{A} \cdot \overline{B}\right) + \left(\overline{A} \cdot B \cdot \overline{C}\right) + {\color{red}\left(\overline{A + \overline{C}}\right)} = \left(\overline{A} \cdot \overline{B}\right) + \left(\overline{A} \cdot B \cdot \overline{C}\right) + {\color{red}\left(\overline{A} \cdot \overline{\overline{C}}\right)}$$二重否定(対合)律 $$$\overline{\overline{x}} = x$$$ を $$$x = C$$$ に適用します:
$$\left(\overline{A} \cdot \overline{B}\right) + \left(\overline{A} \cdot B \cdot \overline{C}\right) + \left(\overline{A} \cdot {\color{red}\left(\overline{\overline{C}}\right)}\right) = \left(\overline{A} \cdot \overline{B}\right) + \left(\overline{A} \cdot B \cdot \overline{C}\right) + \left(\overline{A} \cdot {\color{red}\left(C\right)}\right)$$書き換え:
$${\color{red}\left(\left(\overline{A} \cdot \overline{B}\right) + \left(\overline{A} \cdot B \cdot \overline{C}\right)\right)} + \left(\overline{A} \cdot C\right) = {\color{red}\left(\left(\left(B \cdot \overline{C}\right) + \overline{B}\right) \cdot \overline{A}\right)} + \left(\overline{A} \cdot C\right)$$交換法則を適用する:
$$\left({\color{red}\left(\left(B \cdot \overline{C}\right) + \overline{B}\right)} \cdot \overline{A}\right) + \left(\overline{A} \cdot C\right) = \left({\color{red}\left(\overline{B} + \left(B \cdot \overline{C}\right)\right)} \cdot \overline{A}\right) + \left(\overline{A} \cdot C\right)$$$$$x = \overline{B}$$$ と $$$y = \overline{C}$$$ を用いて冗長律 $$$x + \left(\overline{x} \cdot y\right) = x + y$$$ を適用せよ:
$$\left({\color{red}\left(\overline{B} + \left(B \cdot \overline{C}\right)\right)} \cdot \overline{A}\right) + \left(\overline{A} \cdot C\right) = \left({\color{red}\left(\overline{B} + \overline{C}\right)} \cdot \overline{A}\right) + \left(\overline{A} \cdot C\right)$$書き換え:
$${\color{red}\left(\left(\left(\overline{B} + \overline{C}\right) \cdot \overline{A}\right) + \left(\overline{A} \cdot C\right)\right)} = {\color{red}\left(\left(C + \overline{B} + \overline{C}\right) \cdot \overline{A}\right)}$$交換法則を適用する:
$${\color{red}\left(C + \overline{B} + \overline{C}\right)} \cdot \overline{A} = {\color{red}\left(C + \overline{C} + \overline{B}\right)} \cdot \overline{A}$$余事象の法則 $$$x + \overline{x} = 1$$$ を $$$x = C$$$ に適用する:
$$\left({\color{red}\left(C + \overline{C}\right)} + \overline{B}\right) \cdot \overline{A} = \left({\color{red}\left(1\right)} + \overline{B}\right) \cdot \overline{A}$$交換法則を適用する:
$${\color{red}\left(1 + \overline{B}\right)} \cdot \overline{A} = {\color{red}\left(\overline{B} + 1\right)} \cdot \overline{A}$$支配(零化)法則 $$$x + 1 = 1$$$ を $$$x = \overline{B}$$$ に対して適用せよ:
$${\color{red}\left(\overline{B} + 1\right)} \cdot \overline{A} = {\color{red}\left(1\right)} \cdot \overline{A}$$交換法則を適用する:
$${\color{red}\left(1 \cdot \overline{A}\right)} = {\color{red}\left(\overline{A} \cdot 1\right)}$$同一律 $$$x \cdot 1 = x$$$ を $$$x = \overline{A}$$$ に適用する:
$${\color{red}\left(\overline{A} \cdot 1\right)} = {\color{red}\left(\overline{A}\right)}$$解答
$$$\left(\overline{A} \cdot \overline{B}\right) + \left(\overline{A} \cdot B \cdot \overline{C}\right) + \overline{A + \overline{C}} = \overline{A}$$$