Eenheidsraakvector voor $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \cos{\left(t \right)}, \sqrt{3} t, \sin{\left(t \right)}\right\rangle$$$
Gerelateerde rekenmachines: Rekenmachine voor de eenheidsnormaalvector, Rekenmachine voor de eenheidsbinormaalvector
Uw invoer
Vind de eenheidsraakvector voor $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \cos{\left(t \right)}, \sqrt{3} t, \sin{\left(t \right)}\right\rangle$$$.
Oplossing
Om de eenheidsraakvector te vinden, moeten we de afgeleide van $$$\mathbf{\vec{r}\left(t\right)}$$$ (de raakvector) nemen en deze vervolgens normaliseren (de eenheidsvector bepalen).
$$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle - \sin{\left(t \right)}, \sqrt{3}, \cos{\left(t \right)}\right\rangle$$$ (voor de stappen, zie afgeleide calculator.)
Bepaal de eenheidsvector: $$$\mathbf{\vec{T}\left(t\right)} = \left\langle - \frac{\sin{\left(t \right)}}{2}, \frac{\sqrt{3}}{2}, \frac{\cos{\left(t \right)}}{2}\right\rangle$$$ (voor de stappen, zie eenheidsvector-calculator).
Antwoord
De eenheidsraakvector is $$$\mathbf{\vec{T}\left(t\right)} = \left\langle - \frac{\sin{\left(t \right)}}{2}, \frac{\sqrt{3}}{2}, \frac{\cos{\left(t \right)}}{2}\right\rangle$$$A.