Divergentie van $$$\left\langle x^{2} y, x y z, y z^{2}\right\rangle$$$

De rekenmachine zal de divergentie van het vectorveld $$$\left\langle x^{2} y, x y z, y z^{2}\right\rangle$$$ bepalen, waarbij de stappen worden getoond.

Gerelateerde rekenmachines: Rekenmachine voor partiële afgeleiden, Rekenmachine voor het scalair product

$$$\langle$$$
,
,
$$$\rangle$$$
$$$($$$
,
,
$$$)$$$
Laat leeg als u de divergentie in een specifiek punt niet nodig heeft.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bereken $$$\operatorname{div} \left\langle x^{2} y, x y z, y z^{2}\right\rangle$$$.

Oplossing

Per definitie geldt $$$\operatorname{div} \left\langle x^{2} y, x y z, y z^{2}\right\rangle = \nabla\cdot \left\langle x^{2} y, x y z, y z^{2}\right\rangle$$$, of, equivalent daarmee, $$$\operatorname{div} \left\langle x^{2} y, x y z, y z^{2}\right\rangle = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle\cdot \left\langle x^{2} y, x y z, y z^{2}\right\rangle$$$, waarbij $$$\cdot$$$ de operator voor het scalair product is.

Dus, $$$\operatorname{div} \left\langle x^{2} y, x y z, y z^{2}\right\rangle = \frac{\partial}{\partial x} \left(x^{2} y\right) + \frac{\partial}{\partial y} \left(x y z\right) + \frac{\partial}{\partial z} \left(y z^{2}\right).$$$

Bepaal de partiële afgeleide van component 1 naar $$$x$$$: $$$\frac{\partial}{\partial x} \left(x^{2} y\right) = 2 x y$$$ (voor de stappen, zie derivative calculator).

Bepaal de partiële afgeleide van component 2 naar $$$y$$$: $$$\frac{\partial}{\partial y} \left(x y z\right) = x z$$$ (voor de stappen, zie derivative calculator).

Bepaal de partiële afgeleide van component 3 naar $$$z$$$: $$$\frac{\partial}{\partial z} \left(y z^{2}\right) = 2 y z$$$ (voor de stappen, zie derivative calculator).

Tel nu gewoon de bovenstaande uitdrukkingen op om de divergentie te verkrijgen: $$$\operatorname{div} \left\langle x^{2} y, x y z, y z^{2}\right\rangle = 2 x y + x z + 2 y z$$$

Antwoord

$$$\operatorname{div} \left\langle x^{2} y, x y z, y z^{2}\right\rangle = 2 x y + x z + 2 y z$$$A


Please try a new game Rotatly