Tweede afgeleide van $$$- \sin{\left(x \right)}$$$
Gerelateerde rekenmachines: Afgeleide rekenmachine, Rekenmachine voor logaritmisch differentiëren
Uw invoer
Bepaal $$$\frac{d^{2}}{dx^{2}} \left(- \sin{\left(x \right)}\right)$$$.
Oplossing
Bepaal de eerste afgeleide $$$\frac{d}{dx} \left(- \sin{\left(x \right)}\right)$$$
Pas de regel van de constante factor $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ toe met $$$c = -1$$$ en $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:
$${\color{red}\left(\frac{d}{dx} \left(- \sin{\left(x \right)}\right)\right)} = {\color{red}\left(- \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}$$De afgeleide van de sinus is $$$\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$$$:
$$- {\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} = - {\color{red}\left(\cos{\left(x \right)}\right)}$$Dus, $$$\frac{d}{dx} \left(- \sin{\left(x \right)}\right) = - \cos{\left(x \right)}$$$.
Vervolgens, $$$\frac{d^{2}}{dx^{2}} \left(- \sin{\left(x \right)}\right) = \frac{d}{dx} \left(- \cos{\left(x \right)}\right)$$$
Pas de regel van de constante factor $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ toe met $$$c = -1$$$ en $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:
$${\color{red}\left(\frac{d}{dx} \left(- \cos{\left(x \right)}\right)\right)} = {\color{red}\left(- \frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)}$$De afgeleide van de cosinus is $$$\frac{d}{dx} \left(\cos{\left(x \right)}\right) = - \sin{\left(x \right)}$$$:
$$- {\color{red}\left(\frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)} = - {\color{red}\left(- \sin{\left(x \right)}\right)}$$Dus, $$$\frac{d}{dx} \left(- \cos{\left(x \right)}\right) = \sin{\left(x \right)}$$$.
Daarom geldt $$$\frac{d^{2}}{dx^{2}} \left(- \sin{\left(x \right)}\right) = \sin{\left(x \right)}$$$.
Antwoord
$$$\frac{d^{2}}{dx^{2}} \left(- \sin{\left(x \right)}\right) = \sin{\left(x \right)}$$$A