Rekenmachine voor ontbinding in partiale breuken
Vind partiële breuken stap voor stap
Deze online rekenmachine bepaalt de ontbinding in partiële breuken van de rationele functie, met uitgewerkte stappen.
Solution
Your input: perform the partial fraction decomposition of $$$\frac{2 x^{2} - 1}{x^{6} + 1}$$$
Factor the denominator: $$$\frac{2 x^{2} - 1}{x^{6} + 1}=\frac{2 x^{2} - 1}{\left(x^{2} + 1\right) \left(x^{2} - \sqrt{3} x + 1\right) \left(x^{2} + \sqrt{3} x + 1\right)}$$$
The form of the partial fraction decomposition is
$$\frac{2 x^{2} - 1}{\left(x^{2} + 1\right) \left(x^{2} - \sqrt{3} x + 1\right) \left(x^{2} + \sqrt{3} x + 1\right)}=\frac{A x + B}{x^{2} + 1}+\frac{C x + D}{x^{2} + \sqrt{3} x + 1}+\frac{E x + F}{x^{2} - \sqrt{3} x + 1}$$
Write the right-hand side as a single fraction:
$$\frac{2 x^{2} - 1}{\left(x^{2} + 1\right) \left(x^{2} - \sqrt{3} x + 1\right) \left(x^{2} + \sqrt{3} x + 1\right)}=\frac{\left(x^{2} + 1\right) \left(x^{2} - \sqrt{3} x + 1\right) \left(C x + D\right) + \left(x^{2} + 1\right) \left(x^{2} + \sqrt{3} x + 1\right) \left(E x + F\right) + \left(x^{2} - \sqrt{3} x + 1\right) \left(x^{2} + \sqrt{3} x + 1\right) \left(A x + B\right)}{\left(x^{2} + 1\right) \left(x^{2} - \sqrt{3} x + 1\right) \left(x^{2} + \sqrt{3} x + 1\right)}$$
The denominators are equal, so we require the equality of the numerators:
$$2 x^{2} - 1=\left(x^{2} + 1\right) \left(x^{2} - \sqrt{3} x + 1\right) \left(C x + D\right) + \left(x^{2} + 1\right) \left(x^{2} + \sqrt{3} x + 1\right) \left(E x + F\right) + \left(x^{2} - \sqrt{3} x + 1\right) \left(x^{2} + \sqrt{3} x + 1\right) \left(A x + B\right)$$
Expand the right-hand side:
$$2 x^{2} - 1=x^{5} A + x^{5} C + x^{5} E + x^{4} B - \sqrt{3} x^{4} C + x^{4} D + \sqrt{3} x^{4} E + x^{4} F - x^{3} A + 2 x^{3} C - \sqrt{3} x^{3} D + 2 x^{3} E + \sqrt{3} x^{3} F - x^{2} B - \sqrt{3} x^{2} C + 2 x^{2} D + \sqrt{3} x^{2} E + 2 x^{2} F + x A + x C - \sqrt{3} x D + x E + \sqrt{3} x F + B + D + F$$
Collect up the like terms:
$$2 x^{2} - 1=x^{5} \left(A + C + E\right) + x^{4} \left(B - \sqrt{3} C + D + \sqrt{3} E + F\right) + x^{3} \left(- A + 2 C - \sqrt{3} D + 2 E + \sqrt{3} F\right) + x^{2} \left(- B - \sqrt{3} C + 2 D + \sqrt{3} E + 2 F\right) + x \left(A + C - \sqrt{3} D + E + \sqrt{3} F\right) + B + D + F$$
The coefficients near the like terms should be equal, so the following system is obtained:
$$\begin{cases} A + C + E = 0\\B - \sqrt{3} C + D + \sqrt{3} E + F = 0\\- A + 2 C - \sqrt{3} D + 2 E + \sqrt{3} F = 0\\- B - \sqrt{3} C + 2 D + \sqrt{3} E + 2 F = 2\\A + C - \sqrt{3} D + E + \sqrt{3} F = 0\\B + D + F = -1 \end{cases}$$
Solving it (for steps, see system of equations calculator), we get that $$$A=0$$$, $$$B=-1$$$, $$$C=- \frac{\sqrt{3}}{6}$$$, $$$D=0$$$, $$$E=\frac{\sqrt{3}}{6}$$$, $$$F=0$$$
Therefore,
$$\frac{2 x^{2} - 1}{\left(x^{2} + 1\right) \left(x^{2} - \sqrt{3} x + 1\right) \left(x^{2} + \sqrt{3} x + 1\right)}=\frac{-1}{x^{2} + 1}+\frac{- \frac{\sqrt{3} x}{6}}{x^{2} + \sqrt{3} x + 1}+\frac{\frac{\sqrt{3} x}{6}}{x^{2} - \sqrt{3} x + 1}$$
Answer: $$$\frac{2 x^{2} - 1}{x^{6} + 1}=\frac{-1}{x^{2} + 1}+\frac{- \frac{\sqrt{3} x}{6}}{x^{2} + \sqrt{3} x + 1}+\frac{\frac{\sqrt{3} x}{6}}{x^{2} - \sqrt{3} x + 1}$$$