Rekenmachine voor complexe getallen

Voer stap voor stap bewerkingen uit op complexe getallen

De rekenmachine zal proberen elke complexe uitdrukking te vereenvoudigen, waarbij de stappen worden getoond. De rekenmachine zal optelling, aftrekking, vermenigvuldiging, deling en machtsverheffing uitvoeren, en zal ook de poolvorm, het complex geconjugeerde, de modulus en de reciproke van het complexe getal bepalen.

Enter an expression:

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: simplify and calculate different forms of $$$81 i$$$

The expression is already simplified.

Polar form

For a complex number $$$a+bi$$$, polar form is given by $$$r(\cos(\theta)+i \sin(\theta))$$$, where $$$r=\sqrt{a^2+b^2}$$$ and $$$\theta=\operatorname{atan}\left(\frac{b}{a}\right)$$$

We have that $$$a=0$$$ and $$$b=81$$$

Thus, $$$r=\sqrt{\left(0\right)^2+\left(81\right)^2}=81$$$

Also, $$$\theta=\operatorname{atan}\left(\frac{81}{0}\right)=\frac{\pi}{2}$$$

Therefore, $$$81 i=81 \cos{\left(\frac{\pi}{2} \right)} + 81 i \sin{\left(\frac{\pi}{2} \right)}$$$

Inverse

The inverse of $$$81 i$$$ is $$$\frac{1}{81 i}$$$

Multiply and divide by $$$i$$$ (keep in mind that $$$i^2=-1$$$):

$$${\color{red}{\left(\frac{1}{81 i}\right)}}={\color{red}{\left(- \frac{i}{81}\right)}}$$$

Hence, $$$\frac{1}{81 i}=- \frac{i}{81}$$$

Conjugate

The conjugate of $$$a + i b$$$ is $$$a - i b$$$: the conjugate of $$$81 i$$$ is $$$- 81 i$$$

Modulus

The modulus of $$$a + i b$$$ is $$$\sqrt{a^{2} + b^{2}}$$$: the modulus of $$$81 i$$$ is $$$81$$$

Answer

$$$81 i=81 i=81.0 i$$$

The polar form of $$$81 i$$$ is $$$81 \cos{\left(\frac{\pi}{2} \right)} + 81 i \sin{\left(\frac{\pi}{2} \right)}$$$

The inverse of $$$81 i$$$ is $$$\frac{1}{81 i}=- \frac{i}{81}\approx - 0.0123456790123457 i$$$

The conjugate of $$$81 i$$$ is $$$- 81 i=- 81.0 i$$$

The modulus of $$$81 i$$$ is $$$81$$$


Please try a new game Rotatly