분수를 소수로 변환하는 계산기
분수를 소수로 단계별 변환
이 계산기는 주어진 분수(진분수 또는 가분수)나 대분수를 소수(순환소수일 수도 있음)로 변환하며, 단계별 풀이를 제공합니다.
Solution
Your input: convert $$$\frac{900}{24}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccc}\phantom{3}&\phantom{7}&\phantom{.}&\phantom{5}\end{array}&\\24&\phantom{-}\enclose{longdiv}{\begin{array}{ccc}9&0&0\end{array}}&\\&\begin{array}{lll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$24$$$'s are in $$$9$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$9-24 \cdot 0 = 9 - 0= 9$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}\color{Chartreuse}{0}&\phantom{3}&\phantom{7}&\phantom{.}&\phantom{5}\end{array}&\\\color{Magenta}{24}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}\color{Chartreuse}{9}& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$24$$$'s are in $$$90$$$?
The answer is $$$3$$$.
Write down $$$3$$$ in the upper part of the table.
Now, $$$90-24 \cdot 3 = 90 - 72= 18$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}0&\color{Crimson}{3}&\phantom{7}&\phantom{.}&\phantom{5}\end{array}&\\\color{Magenta}{24}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}9&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Crimson}{9}&\color{Crimson}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}7&2&\phantom{.}\\\hline\phantom{lll}1&8&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$24$$$'s are in $$$180$$$?
The answer is $$$7$$$.
Write down $$$7$$$ in the upper part of the table.
Now, $$$180-24 \cdot 7 = 180 - 168= 12$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}0&3&\color{GoldenRod}{7}&\phantom{.}&\phantom{5}\end{array}&\\\color{Magenta}{24}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}9&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}7&2&\phantom{.}\\\hline\phantom{lll}\color{GoldenRod}{1}&\color{GoldenRod}{8}&\color{GoldenRod}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&6&8&\phantom{.}\\\hline\phantom{lll}&1&2&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$24$$$'s are in $$$120$$$?
The answer is $$$5$$$.
Write down $$$5$$$ in the upper part of the table.
Now, $$$120-24 \cdot 5 = 120 - 120= 0$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}0&3&7&.&\color{Purple}{5}\end{array}&\\\color{Magenta}{24}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}9&0&0&.&0\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}7&2&\phantom{.}\\\hline\phantom{lll}1&8&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&6&8&\phantom{.}\\\hline\phantom{lll}&\color{Purple}{1}&\color{Purple}{2}&\phantom{.}&\color{Purple}{0}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&1&2&\phantom{.}&0\\\hline\phantom{lll}&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{900}{24}=37.5 \overline{}$$$
Answer: $$$\frac{900}{24}=37.5\overline{}$$$